

Physics > Chemical Physics

Supersymmetry identifies molecular Stark states whose eigenproperties can be obtained analytically

Mikhail Lemeshko, Mustafa Mustafa, Sabre Kais, Bretislav Friedrich

(Submitted on 22 Jun 2011)

We made use of supersymmetric (SUSY) quantum mechanics to find a condition under which the Stark effect problem for a polar and polarizable closed-shell diatomic molecule subject to collinear electrostatic and nonresonant radiative fields becomes exactly solvable. The condition, \$\Delta \omega = \frac{\omega^2}{4 (m+1)^2}\$, connects values of the dimensionless parameters \$\omega\$ and \$\Delta \omega\$ that characterize the strengths of the permanent and induced dipole interactions of the molecule with the respective fields. The exact solutions are obtained for the \$\\tilde{J}=m,m;\omega,\Delta \omega>\$ family of "stretched" states. The field-free and strong-field limits of the combined-fields problem were found to exhibit supersymmetry and shape-invariance, which is indeed the reason why they are analytically solvable. By making use of the analytic form of the \$\\tilde{J}=m,m;\omega,\Delta \omega>\$ wavefunctions, we obtained simple formulae for the expectation values of the space-fixed electric dipole moment, the alignment cosine, the angular momentum squared, and derived a "sum rule" which combines the above expectation values into a formula for the eigenenergy. The analytic expressions for the characteristics of the strongly oriented and aligned states provide a direct access to the values of the interaction parameters required for creating such states in the laboratory.

Comments:12 pages, 4 figures, 1 tableSubjects:Chemical Physics (physics.chem-ph); Mathematical
Physics (math-ph); Atomic Physics (physics.atom-ph);
Quantum Physics (quant-ph)Journal reference:New J. Phys. 13, 063036 (2011)DOI:10.1088/1367-2630/13/6/063036Cite as:arXiv:1106.4402v1 [physics.chem-ph]

(Help | Advanced search)

Go!

Search or Article-id

All papers 🚽

Download:

- PDF
- Other formats

Current browse context: physics.chem-ph

< prev | next >

new | recent | 1106

Change to browse by:

math math-ph physics physics.atom-ph quant-ph

References & Citations

NASA ADS

Bookmark(what is this?)

🗐 💿 🗶 💀 🖪 丽 🚽 🏭 👾

Submission history

From: Mikhail Lemeshko [view email] [v1] Wed, 22 Jun 2011 09:19:08 GMT (1216kb,D)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.