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Abstract: We describe dimensionally constrained symbolic regression which has been

developed for mass measurement in certain classes of events in high-energy physics (HEP).

With symbolic regression, we can derive equations that are well known in HEP. However,

in problems with large number of variables, we find that by constraining the terms allowed

in the symbolic regression, convergence behavior is improved. Dimensionally constrained

symbolic regression (DCSR) finds solutions with much better fitness than is normally pos-

sible with symbolic regression. In some cases, novel solutions are found.
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1. Introduction

Extraction of a physical parameter from data is an area where application of symbolic

regression can be useful, especially if the relationship between the parameter of interest and

measured variables are contrived and non-linear [2]. In the problem of mass measurement

of a particle in high-energy physics, the relationship is determined exactly if all the decayed

particles are detected and measured by the detector. The problem becomes non-trivial if

some of the particles escape detection.

In W boson mass measurement with W → ℓν at hadron colliders, the neutrino (ν)

escapes detection, but its transverse components of the momentum are measured indirectly.

In this case, transverse mass (MT ) is known to be the most sensitive variable to the W

boson mass MW [1].

In searches of interest at LHC and the Tevatron, such as the Higgs particle and super-

symmetry phenomena, there are two or more particles which escape the detector without

leaving any signal. It makes mass measurement of these particles challenging. In some of

cases, there many solutions are known, but it is not clear in what sense they are optimal

for the mass measurement [4, 5, 3]. By applying symbolic regression to these problems, we

may be able to derive optimal equations sensitive to mass and gain new insight.
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2. Dimensionally Constrained Symbolic Regression and Its Implementa-

tion

Symbolic regression(SR) is a method which can be used to derive relationship between

input variables and the desired output values. It is an application of genetic programming

technique. In SR, an individual of a population is symbolic form of an equation. By

applying genetic operations, the population evolves and gradual improvement of the overall

population as well its most fit individual occur. Selection is done at the individual level at

each generation based on its fitness.

We need to define the representation, functions/operators to be used, terminals that

will be used to form an individual in SR. These, in addition to genetic operations, fitness

function, and numerous parameters, define an SR. Later, we will describe the dimensionally

constrained symbolic regression (DCSR) used for mass reconstruction problems in HEP.

To have the flexibility DCSR as an option, we implemented a general SR in C++ language

based on ROOT C++ libraries [7].

2.1 Representation and Genetic Operations in SR

Internally, mathematical expression is represented as a binary tree (Fig. 1). Operators or

functions appear at tree nodes and arguments to them appear as branches. Binary tree

representation allows for efficient manipulation and evaluation of mathematical expressions.

The functions and operators allowed are as follows:

• Basic arithmetic operators: +, −, ×, ÷

• Negation

• Power

• Transcendental functions:
√
, log, sin, cos, exp

• Unit step function

For a function or operator that accepts only one argument, the second leaf may be

populated, but is not evaluated. Although the second argument has no meaning with

respect to the function or operator, it may nonetheless affect evolution. With cross-over

operations and mutations, this second leaf may be picked up for genetic operations. Our

implementation is flexible enough such that we can add more functions or operators, if

needed.

When creating an arbitrary expression, the functions or operators are picked randomly

according to certain probabilities. The probabilities should be provided as an input to SR.

To a certain degree, they will depend on the problem to be solved. We can control the

relative rates these functions or operators are chosen through the input parameters of SR.
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Figure 1: A binary tree of expression (v1 + v2) ∗ v3.

2.2 Terminals

The input variables and constant become terminals of expression trees. In our implemen-

tation of SR, the relative rate for variables and constants can be controlled. However, we

set the probability to choose among the variables the same. For the DCSR, which we will

describe latter section, we only allow dimensionless arbitrary constants.

2.3 Building Expressions from Functions/Operators and Terminals

A random expression can be build by first choosing a function or an operator randomly

with the predefined probability. This becomes the head node of a tree. Then the leaf

nodes are built recursively by creating a new expression. An expression can be any of the

following:

• Terminal - constant or variable

• Unary function - f(x), where x is another expression

• Binary function - g(x, y), where x and y are expressions

Since the expression can go on forever, probability to choose a terminal must not be 0,

and/or when the maximum depth of a tree is reached, one of the terminals is chosen.

2.4 Parameters of SR

Below, we list the complete start up parameters

• Number of variables (nvar) to use in terminals.

• Number of generations (ngen) in evolution of population.

• Population size (npop) - At each generation, the population size is kept fixed.

• Tournament size (ntourn) - A parent is chosen through a tournament from a randomly

chosen subset of size ntourn from the population.

• Flag whether to try double tournament bdoublet - If bdoublet = true, each parent is

chosen in separate tournaments. Otherwise, the best two in a single tournament are

chosen as parents.
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• Maximum depth of tree (mdepth).

• Copy reproduction (ncopy) - best ncopy individuals of a population are simply copied

to the next generation. These individuals may still participate in sexual reproduction.

• Fraction of new children produced through sexual reproduction in population (Pxover)

- Number of children in each generation is npop × Pxover.

• Mutation probability (Pmut) - Mutation probability per node

• Drop probability (Pdrop) - Probability per node to drop it in a mutation

• Probability to pick a constant (Pconst)

• Probability to pick i th function or operator (Pop,i)

For the examples in the next section, some of the parameters of interest are: Pxover =

0.5, Pmut = 0 0.1, npop = 500 2500, ntourn = 0 0.2 · npop. The basic arithmetic operators

(+,−,×,÷) have probabilities between 5% to 25% each. The other functions and operators

take up the remaining probability equally. These probabilities vary for each run.

2.5 Initialization, training, fitness evaluation and evolution of SR

In the initialization stage, random expressions are created to populate the first generation.

The user can choose to create an initial population with the expression filled to the maxi-

mum tree depth or not. This depends on the problem being considered. For the purpose

of mass reconstruction, we find that having the initial population filled to the maximum

depth of the tree is not necessarily beneficial, since most of the initial population has poor

fitness and get discarded after a few generations.

No distinction is made between the training and testing sample. One half of the input

sample is randomly chosen for the training sample and the other half is the testing sample.

This choice is made for every generation. Fitness of each individual is evaluated on the

testing sample according to the criteria for a problem.

Evolution of population is done through two main avenues. First is the sexual re-

production, where parents are not chosen randomly, but through a tournament. In a

tournament, random subpool of ntourn individuals are chosen randomly and the best two

individuals are chosen as parents in a single-tournament method. In a double tournament

method, the parents are chosen from two tournaments by selecting the best fit individual

in each tournament.

Once the parents are selected, then the subnodes are selected from two parents and

swapped in place. We accept only one child from a set of parents, this choice is random. It

is well-documented in literature that selecting a random subexpression for swapping leads

to trivial or minimal modifications as nodes that have terminals are chosen more often.

Therefore, we choose internal nodes 90% of the times for swapping.

Asexual reproduction is done by having mutations occurring in random nodes in the

expression tree. Selected node is either replaced with another expression or it is dropped.

If it is to be replaced, an expression tree randomly generated using the parameters of
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Figure 2: Creation of a child through cross-over operation. The cross over of genes occuring

between v3 and v4− v1 from the two parents yields a new child (v1 + v2) ∗ (v4− v1).

the symbolic regression algorithm. An individual which successfully had a child can still

participate in an asexual reproduction. We finally, let the “elite” (ncopy) to go to the next

generation without modifications.

2.6 Evaluation of Fitness

Fitness function is problem specific. Evaluation of fitness is done on a set of test sample by

traversing the expression tree. This is computationally the most time consuming part of SR.

Expressions which do not yield machine-real numbers are assigned a number corresponding

to a very poor fitness, marking them likely for removal. An individual with a more compact

expression is favorable and a small penalty proportional to the number of nodes is imposed

on each individual.

2.7 Dimensionally Constrained Symbolic Regression

Symbolic regression must yield a dimensionally sensible result if it is to be interpretable.

In this application, we would like to construct equations related to mass of a particle. In

natural units (c = 1 and ~ = 1), the mass has the same physical dimensions as momentum

and energy. We will assume that the target dimension is pn, i.e., momentum raised to

integer power, and that variables have dimension 1 or 0.

We see that the arguments to operators or functions must satisfy certain constraints.

If d(a) stands for the physical dimension of expression a:

• a± b: d(a± b) = d(a) = d(b).

• a× b: d(a× b) = d(a) + d(b).

• a÷ b: d(a÷ b) = d(a)− d(b).

• √
a: d(a)

2 = d(
√
a)

• xa: d(xa) = d(x) ∗ a and d(a) = 0

– 5 –



• Transcendental function f(a): d(f(a)) = 0 and a = 0.

Note that the argument to a transcendtal function must be dimensionless.

Using these rules, we can impose that an expression built by symbolic regression should

have the correct physical dimensions. We would need to reformulate the transformation

rules for evolution compared to the regular SR.

An n (an integer) dimensional term can be built recursively by applying one of the

following rules:

• n− 1-dim term × 1-dim term

• n-dim term ± n-dim term

• n-dim term × 0-dim term

• square root of an 2n-dim term

A 0-dimensional term can be created by dividing two 1-dimensional terms or applying a

transcendental function to argument of 0-dimension. And -1-dimensional term can be cre-

ated by taking an invervse of 1-dimensional term. One can see that any integer dimensional

term can be created using these rules.

In DCSR, rules for cross-over and mutation need to be modified accordingly. Ex-

change or replacement of expressions can occur only among those with the same physical

dimensions, otherwise it is not permitted.

3. Application of Symbolic Regression to Mass Measurement Problem

In this section, we will apply symbolic regression to a few problems of mass determination

in high-energy physics. In the first two cases, we apply it to the problem where the answer

is well-known. And in the third case, we try to find a symbolic expression for the Higgs

mass that can be applied to a case where Higgs boson decays to W+W− and each W boson

decays leptonically.

3.1 Invariant mass

As a first example, we choose a trivial example, one for which we already know the answer.

The variables given are the components of 4-vector, (px, py, pz, E), and the target value we

would like to obtain is m2 = E2 − p2x − p2y − p2z. A 1000 toy data sample was generated

satisfying the relationship.

Symbolic regressions with different values of parameters were tried on this data. Fitness

function is 1
n

∑

n |m − mtrue|, where n is the size of data. Figure 3 shows evolution of

fitnesses of the best fit individuals in each run. In 26% of the runs, the correct formula

for invariant mass is found. The right plot of Fig. 3 shows the evolution of the best fit

individual of run 36. At the start of the run, the best fit expression is
√

|E2 cos pz − E|,
which is meaningless physically. By generation 86, the equation m2 = E2 − p2x − p2y − p2z is

found. When DCSR is used on the same sample, the chances for success increases to 68%.
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Figure 3: Evolution of minimum absolute error of symbolic regression trained with invariant mass

data. Out of 100 runs, 26% yield the correct formula m2 = E2 − p2x − p2y − p2z. Evolution of fitness

of 36th run is shown by itself.

3.2 Events with Missing Information - Transverse Mass

A more realistic and interesting application of symbolic regression is to a problem where in-

formation is lost. A classic example would be where a massive particle decays into a charged

lepton and a neutrino in a hadronic collision. Transverse mass MT =
√
pTℓ 66ET − ~pTℓ· 6~pT is

typically used to measure the mass of the W boson. To test whether we can extract this

mass relationship, a phase-space generator is used to create the momenta of lepton and neu-

trino from a hypothetical massive particle with an exponentially falling initial transverse

momentum distribution for particle masses between 0 GeV and 100 GeV.

The fitness function used was 1
n

∑n |mi,est −mi,true|/mi,true, where mi,est is the value

returned by ith individual. Some trees reach a global minimum as shown in Fig 4. For

those that reach a global minimum, the equation is m2
est = 2.38(pTℓ 66ET − ~pTℓ· 6~pT ), which

is the same as the definition of MT except for the overall constant factor.

Depending on the parameters of the genetic algorithm, it may take longer to reach

this minimum. Some may fail to reach this minimum For example, if the minimization

criteria were
√

1
n

∑n(mi,est −mi,true)2, almost all trials of symbolic regression fail to reach

the global minimum. The populations get quickly trapped into a local minima. This is

the result of using a minimizing criteria that heavily penalizes the outliers. It is a known

feature of genetic algorithm that having individuals with poor fitness in the gene pool is

important in population to reach the global minimum. Without DCSR, 7% of the trials

find the solutions, while with DCSR the success rate increases to 40%. We find that

constraining the terms allowed increases the speed of convergence and the chances for a

successful convergence.

3.3 Mass Sensitive Variable in H → WW ∗ → ℓ+νℓ−ν̄

Higgs mass determination in H → WW∗ → ℓ+νℓ−ν̄ in hadron colliders is an inportant
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Figure 4: Evolution of minimum of fitness in 100 runs without DCSR (left) and with DCSR

(right) during training using lepton and neutrino momenta variable set as inputs (pT , px, py, pz, 6E, 6
ETx, 6ETy). With DCSR, the fraction of runs that find the equation for transverse mass increases

dramatically.

problem. In this channel, two lepton momenta ~pℓ1, ~pℓ2 and the vector sum of the two

neutrino transverse momenta 6~ET = 6~ETν1+ 6~ETν2 are measured in experiments. Since there

are only two equations related to neutrino momenta, the system is under-constrained. If

we knew both W bosons were real, we would still need two extra equations to constrain the

system. Therefore one cannot solve for the neutrino momenta exactly even in principle.

Existing studies relied on analysis of kinematics to find expressions that behave linearly

to the Higgs boson mass [3, 5]. In this study, we apply symbolic regression to the problem

and find an expression that not only shows linear behavior, but also whose widths of the

mass distribution are narrow.

Symbolic regression is applied to a data generated with PYTHIA pp → H → WW ∗ →
ℓ+νℓ−ν̄ at

√
s = 14 TeV with MH varying from 120 GeV to 200 GeV [8]. Detector simula-

tion is not performed on this data in order to find the ideal expression. Momentum com-

ponents and energy of the two charged leptons (p1T , p1x, p1y, p1z, E1, p2T , p2x, p2y, p2z, E2)

and missing ET information (6ET , 6Ex, 6Ey) are used as input variables for the symbolic

regression. The fitness function used is the average of fractional absolute difference:
1
N

∑

i |Mrec,i −MH,i|/MH,i.

Without DCSR, the symbolic regression is not able to yield meaningful results. This

seems to be due to the greater number of variables used. The number of terms of dimension

2 with only multiplication allowed is 78, which makes the possible function space to explore

very large.

If fractional root mean-squared (RMS) ( 1
N [

∑

i(Mrec,i −MH,i)
2/M2

H,i]
1/2) were used as

the fitness function, the symbolic regression would get trapped into local minima even with

DCSR since outliers pay a heavy penalty.

Figure 5 shows evolution of fitness of best-fit individuals in 100 runs as a function of
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the number of generations. DCSR is able to converge on meaningful results and yields the

best estimate for the M2
H as

S2
mass = 2p21T + 2p22T + 3

(

p1T p2T+ 6ET (p1T + p2T )− 6~ET · (~p1T + ~p2T )− 2~p1T · ~p2T
)

.

Symmetry of the two leptons in the system is recognized by the symbolic regression au-

tomatically, even though symmetry condition was not imposed. More detail on the Higgs

mass measurement using this result is discussed in Ref. [9].
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Figure 5: Left: Evolution of best fit individuals function in 100 runs. Right: Distribution of

ratio of predicted mass to true mass, mpred/mH , versus the true Higgs mass mH . The sample was

generated using PYTHIA.

3.4 Computational performance

With our implementation, on a 24 thread X5650 Xeon machine, it takes approximately

1 day to complete the 100 runs for the Higgs mass example. Most of the time is spent

in evaluation of the fitness function. We noticed memory fragmentation occurring and

evaluation tended to become slower as time went on. A Mathematica implementation,

which was simple to write, did not suffer from memory problems. However, it was inherently

slow. Using the parallel processing capabability of Mathematica 7, even when we used all

24 threads, one run took about a day to complete.

With the advent of higher multiplicity core CPUs in the future, it may become com-

putationally favorable to use this tool. One avenue that needs to be explored is to consider

the backgrounds when optimizing. At the moment, it would be very expensive to evaluate

fitness including backgrounds since a simple fitness function would no longer suffice.

4. Conclusion

We have defined and implemented dimensionally constrained symbolic regression for use in

high-energy physics problems. We find that it reproduces some of the well-known results,
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such as invariant mass and transverse mass. We used it to construct a function that is

linear and sensitive to the Higgs boson mass MH . that has not been previously known. We

expect that this method would be useful in cases with more than one undetected particles,

where it is not trivial what variable could give the best performance.
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