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ON QUANTUM HUYGENS PRINCIPLE AND RAYLEIGH SCATTERING

JÉRÉMY FAUPIN AND ISRAEL MICHAEL SIGAL

Abstract. We prove several minimal photon velocity estimates below the ionization threshold for
a particle system coupled to the quantized electromagnetic or phonon field. Using some of these
results, we prove the asymptotic completeness (for the Rayleigh scattering) on the states for which
the expectation of the photon number is uniformly bounded.

1. Introduction

In this paper we study the long-time dynamics of a non-relativistic particle system coupled to the
quantized electromagnetic or phonon field. For energies below the ionization threshold, we prove
several lower bounds on the growth of the distance of the escaping photons to the particle system.
(Here and in what follows we use the term photon for both photon and phonon.) Using some of
these results, we prove the asymptotic completeness (for the Rayleigh scattering) on the states for
which the expectation of the photon number is bounded uniformly in time.

Model. The state space for our model is given by H := Hp⊗F and the dynamics is generated by
the Hamiltonian

H = Hp +Hf + I(g), (1.1)

acting on it. Here Hp is the particle state space, F is the bosonic Fock space, F ≡ Γ(h) := ⊕∞
0 ⊗n

s h,
based on the one-photon space h := L2(R3), Hp is a self-adjoint particle system Hamiltonian, acting
on Hp, and Hf := dΓ(ω) is the photon Hamiltonian, acting on F , where ω = ω(k) is the photon
dispersion law (k is the photon wave vector) and dΓ(b) denotes the lifting of a one-photon operator
b to the photon Fock space,

dΓ(b)|⊗n
s h

=

n∑

j=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗b⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−j

. (1.2)

Here ⊗n
s stands for the symmetrized tensor product of n factors (for n = 0, h is replaced by C

and dΓ(b)|C = 0). The operator I(g) acts on H and represents an interaction energy, labeled by a
coupling family g(k) of operators acting on the particle space Hp.

For photons ω(k) = |k|, for acoustic phonons, ω(k) ≍ |k| for small |k| and c ≤ ω(k) ≤ c−1,
for some c > 0, away from 0, while for optical phonons, c ≤ ω(k) ≤ c−1, for some c > 0, for all
k. To fix ideas we consider below only the most difficult case of ω(k) = |k|. (For photons, to
accommodate their polarizations, the one-boson space L2(R3) should be replaced by L2(R3;C2),
but the resulting modifications are trivial, see e.g. [29, 34].) In the simplest case of linear coupling
(the dipole approximation in QED or the phonon models), I(g) is given by

I(g) :=

∫
(g∗(k)⊗ a(k) + g(k) ⊗ a∗(k))dk, (1.3)

with a∗(k) and a(k), the creation and annihilation operators, acting on F (see Supplement II for
definitions).

A primary model for the particle system to have in mind is an electron in a vacuum or in a solid
in an external potential V . In this case, Hp := ǫ(p)+V (x), p = −i∇x, with ǫ(p) being the standard
non-relativistic kinetic energy, ǫ(p) = |p|2 ≡ −∆x (the Nelson model), or the electron dispersion
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law in a crystal lattice (a standard model in solid state physics), acting on Hp := L2(R3), and the
coupling family is given by

g(k) = |k|µξ(k)eikx, (1.4)

where ξ(k) is the ultraviolet cut-off. For phonons, µ = 1/2. To have a self-adjoint operator Hp we
assume that V is a Kato potential. A key fact here is that there is a spectral point Σ ∈ σ(H),
called the ionization threshold, s.t. below Σ, the particle system is well localized:

‖eδ|x|f(H)‖ . 1, (1.5)

for any 0 ≤ δ < dist(supp f,Σ) and any f ∈ C∞
0 ((−∞,Σ)), i.e. states decay exponentially in the

particle coordinates x ([26, 5, 6]). This can be easily upgraded to an N−body system (e.g. an
atom or a molecule, see e.g. [29, 34]). Another example – the spin-boson model – will be defined
below.

Finally, the above can be extended to the standard model of non-relativistic quantum electro-
dynamics in which particles are minimally coupled to the quantized electromagnetic field, which
leads to I(g) being quadratic in the creation and annihilation operators a#(k).

Problem. In all above cases, the Hamiltonian H is self-adjoint and generates the dynamics through
the Schrödinger equation,

i∂tψt = Hψt. (1.6)

As initial conditions, ψ0, we consider states below the ionization threshold, Σ, defined in (1.12),
i.e. ψ0 in the range of the spectral projection E∆(H), ∆ := (−∞,Σ). In other words, we are
interested in processes, like emission and absorption of radiation, or scattering of photons on an
electron bound by an external potential (created e.g. by an infinitely heavy nucleus or impurity of
a crystal lattice), in which the particle system (say, an atom or a molecule) is not being ionized.

Denote by Φj and Ej the eigenfunctions and the corresponding eigenvalues of the hamiltonian
H, below Σ, i.e. Ej < Σ. The following are the key characteristics of evolution of a physical system,
in progressive order the refined information they provide and in our context:

• Local decay stating that some photons are bound to the particle system while others (if
any) escape to infinity, i.e. the probability that they occupy any bounded region of the
physical space tends to zero, as t→ ∞.

• Minimal photon velocity bound with speed c stating that, as t→ ∞, with probability → 1,
the photons are either bound to the particle system or depart from it with the distance
≥ c′t, for any c′ < c.
Similarly, if the probability that at least one photon is at the distance ≥ c′′t, c′′ > c, from
the particle system vanishes, as t → ∞, we say that the evolution satisfies the maximal
photon velocity bound with speed c.

• Asymptotic completeness on the interval (−∞,Σ) stating that, for any ψ0 ∈ Ranχ(−∞,Σ)(H),
and any ǫ > 0, there are photon wave functions fjǫ ∈ F , with a finite number of photons,
s.t. the solution, ψt = e−itHψ0, of the Schrödinger equation, (1.6), satisfies

lim sup
t→∞

‖e−itHψ0 −
∑

j

e−iEjtΦj ⊗s e
−iHf tfjǫ‖ ≤ ǫ. (1.7)

(It will be shown in the text that Φj ⊗s fjǫ is well-defined, at least for the ground state
(j = 0).) In other words, for any ǫ > 0 and with the probability ≥ 1 − ǫ, the Schrödinger
evolution ψt approaches asymptotically a superposition of states in which the particle system
with a photon cloud bound to it is in one of its bound states Φj, with additional photons
(or possibly none) escaping to infinity with the velocity of light.

The reason for ǫ > 0 in (1.7) is that for the state Φj⊗s f to be well defined, as one would expect,
one would have to have a very tight control on the number of photons in f , i.e. the number of
photons escaping the particle system. (See the remark at the end of Subsection 5.4 for a more
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technical explanation.) For massive bosons ǫ > 0 can be dropped (set to zero), as the number of
photons can be bound by the energy cut-off.

We describe the photon position by the operator y := i∇k on L2(R3), canonically conjugate
to the photon momentum k (see [9] for a discussion of the notion of the photon position in our
context). We say that the system obeys the quantum Huygens principle if the Schrödinger evolution,
ψt = e−itHψ0, obeys the estimates

∫ ∞

1
dt t−α

′‖dΓ(χ |y|
ctα

=1
)
1
2ψt‖2 . ‖ψ0‖20, (1.8)

for some norm ‖ψ0‖0, some 0 < α′ ≤ 1, and for any α > 0 and c > 0 such that either α < 1 or
α = 1 and c < 1. In other words there are no photons which either diffuse or propagate with speed
< 1. Here χΩ denotes a smoothed out characteristic function of the set Ω, which is defined at the
end of the introduction. The maximal velocity estimate, as proven in [9], states that, for µ > 0,
any c̄ > 1, and γ < µ

2 min( c̄−1
3c̄−1 ,

1
2+µ),

∥∥dΓ
(
χ|y|≥c̄t

) 1
2ψt

∥∥ . t−γ
∥∥(dΓ(〈y〉) + 1)

1
2ψ0

∥∥. (1.9)

Considerable progress has been made in understanding the asymptotic dynamics of non-relativis-
tic particle systems coupled to quantized electromagnetic or phonon field. The local decay property
was proven in [6, 7, 22, 23, 20, 21, 8, 10], by positive commutator techniques and the combination
of the renormalization group and positive commutator methods. The maximal velocity estimate
was proven in [9].

An important breakthrough was achieved recently in [11], where the authors proved relaxation to
the ground state and uniform bounds on the number of emitted massless bosons in the spin-boson
model.

In scattering theory, asymptotic completeness was proven for (a small perturbation of) a solvable
model involving a harmonic oscillator (see [2, 39]), and for models involving massive boson fields
([14, 17, 18, 19]). Moreover, [24] obtained some important results for massless bosons. Motivated
by the many-body quantum scattering, [14, 24, 17, 18, 19] defined main notions of the scattering
theory on Fock spaces, such as wave operators, asymptotic completeness and propagation estimates.

Results. Now we formulate our results. For notational simplicity we consider (1.1), with the linear
coupling (1.3). The coupling operators g(k) are assumed to satisfy

‖η|α|∂αg(k)‖Hp . |k|µ−|α|ξ(k), |α| ≤ 2, (1.10)

where ξ(k) is the ultra-violet cut-off (a smooth function decaying sufficiently rapidly at infinity) and
η is an estimating operator on the particle space Hp (a bounded, positive operator with unbounded
inverse), satisfying

‖η−nf(H)‖ . 1, (1.11)

for any n = 1, 2 and f ∈ C∞
0 ((−∞,Σ)). For the particle model discussed in the paragraph

containing (1.4), (1.10) holds with η = 〈x〉−1, where 〈x〉 = (1+|x|2)1/2, and the ionization threshold,
Σ, for which (1.11) is true, is given by

Σ := lim
R→∞

inf
ϕ∈DR

〈ϕ,Hϕ〉, (1.12)

where the infimum is taken over DR = {ϕ ∈ D(H)| ϕ(x) = 0 if |x| < R, ‖ϕ‖ = 1} (see [26]; Σ is
close to inf σess(Hp)). For the spin-boson model defined below, η = 1.

Below, we assume µ > −1/2 or µ > 0. To apply our techniques to minimally coupled particle
systems, where µ = −1/2, one would have to perform first the generalized Pauli-Fierz transform of
[33], as it is done in [9] (see also [29, 34]), which brings it to µ = 1/2.

It is known (see [6, 27]) that the operator H has the unique ground state (denoted here as Φgs)
and that generically (e.g. under the Fermi Golden Rule condition) it has no eigenvalues in the
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interval (Egs,Σ), where Egs is the ground state energy (see [7]). We assume that this is exactly
the case:

Fermi’s Golden Rule ([5, 6]) holds. (1.13)

Treatment of the (exceptional) situation when such eigenvalues do occur requires, within our ap-
proach, proving a delicate estimate ‖PΩf(H)‖ . 〈g〉, where PΩ denotes the projection onto Hp⊗Ω
(Ω := 1⊕0⊕. . . is the vacuum in F) and f ∈ C∞

0 ((Egs,Σ)\σp(H)), uniformly in dist(supp f, σp(H)).

In what follows we let ψt denote the Schrödinger evolution, ψt = e−itHψ0, i.e. the solution
of Schrödinger equation (1.6), with an initial condition ψ0, satisfying ψ0 = f(H)ψ0, with f ∈
C∞
0 ((−∞,Σ)).

For A ≥ −C, we denote ‖ψ0‖A := (‖ψ0‖2 + ‖(A + C)
1
2ψ0‖2)1/2. We define ν(ρ) ≥ 0 by the

inequality

〈ψt,dΓ(ωρ)ψt〉 . tν(ρ)‖ψ0‖2ρ, (1.14)

where ‖ψ‖2ρ = ‖ψ‖2H + ‖ψ‖2dΓ(ωρ). It was shown in [9] (see (A.1) of Appendix A) that, for any

−1 ≤ ρ ≤ 1, the inequality (1.14) holds for the the exponent ν(ρ) = 1−ρ
2+µ (this generalizes an earlier

bound due to [24]). Also, the bound

‖ψt‖Hf
. ‖ψ0‖H (1.15)

shows that (1.14) holds for ρ = 1 with ν(1) = 0. With ν(δ) defined by (1.14), we prove the following
two results.

Theorem 1.1 (Quantum Huygens principle). Assume (1.10) with µ > −1/2 and (1.11). Let either
β < 1, or β = 1 and c < 1. Assume

β > max
(5
6
+
ν(−1)− ν(0)

6
,
1

2
+

1

2(32 + µ)

)
. (1.16)

Then for any initial condition ψ0 ∈ f(H)D(dΓ(ω−1)1/2), for some f ∈ C∞
0 ((−∞,Σ)), the Schrödinger

evolution, ψt, satisfies, for any a > 1, the following estimate∫ ∞

1
dt t−β−aν(0)‖dΓ(χ |y|

ctβ
=1

)
1
2ψt‖2 . ‖ψ0‖2−1. (1.17)

To formulate our next result we let Γ(χ) be the lifting of a one-photon operator χ (e.g. a
smoothed out characteristic function of y) to the photon Fock space, defined by

Γ(χ) = ⊕∞
n=0(⊗nχ), (1.18)

(so that Γ(eb) = edΓ(b)), and then to the space of the total system. We have

Theorem 1.2 (Weak minimal photon escape velocity estimate). Assume (1.10) with µ > −1/2,

(1.11) and (1.13). Let the norm 〈g〉 :=
∑

|α|≤2 ‖η|α|∂αg‖L2(R3,Hp) of the coupling function g be

sufficiently small and ν(−1) < α < 1− ν(0). Then for any initial condition ψ0 ∈ f(H)D(dΓ(〈y〉)),
for some f ∈ C∞

0 ((Egs,Σ)), the Schrödinger evolution, ψt, satisfies the estimate

‖Γ(χ|y|≤c′tα)ψt‖ . t−γ‖ψ0‖dΓ(〈y〉)2 , (1.19)

where γ < 1
2 min(1− α− ν(0), 12(α− ν(0)− ν(−1))).

Remarks.

1) The estimate (1.17) is sharp if ν(0) = 0. Assuming this and taking ν(−1) = (3/2 + µ)−1 (see
(A.8)), the condition (1.16) on β in Theorem 1.1 becomes β > 5

6 + 1
6(3/2+µ) , and the condition on

α in Theorem 1.2, (3/2 + µ)−1 < α < 1.
2) The estimate (1.19) states that, as t → ∞, with probability → 1, either all photons are

attached to the particle system in the combined ground state, or at least one photon departs the
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particle system with the distance growing at least as O(tα). ((1.19) for µ ≥ 1/2, some α > 0 and
ψ0 ∈ E∆(H), with ∆ ⊂ (Egs, e1 −O(〈g〉)) and e1 the first excited eigenvalue of Hp, can be derived
directly from [8, 9].)

3) With some more work, one can remove Assumption (1.13) and relax the condition on ψ0 in
Theorem 1.2 to the natural one: ψ0 ∈ PΣD(dΓ(〈y〉)), where PΣ is the spectral projection onto the
orthogonal complement of the eigenfunctions of H with the eigenvalues in the interval (−∞,Σ).

Let N := dΓ(1) be the photon (or phonon) number operator. Our next result is

Theorem 1.3 (Asymptotic Completeness). Assume (1.10) with µ > 0, (1.11) and (1.13). Let the
norm 〈g〉 := ∑

|α|≤2 ‖η|α|∂αg‖L2(R3,Hp) of the coupling function g be sufficiently small. Suppose that

‖N 1
2ψt‖ . ‖N 1

2ψ0‖+ ‖ψ0‖, (1.20)

uniformly in t ∈ [0,∞), for any ψ0 ∈ D(N1/2). Then the asymptotic completeness holds on
RanE(−∞,Σ)(H).

As we see from the results above, the uniform bound, (1.20), on the number of photons (or
phonons) emerges as the remaining stumbling block to proving the asymptotic completeness without
qualifications.

For massive bosons (e.g. optical phonons), the inequality (1.20) (as well as (1.14), with ν(0) = 0)
is easily proven and the proof below simplifies considerably as well. In this case, the result is
unconditional. It was first proven in [14] for the models with confined particles, and in [17] for the
Rayleigh scattering.

The difficulty in proving this bound for massless particles is due to the same infrared problem
which pervades this field and which was successfully tackled in other central issues, such as the
theory of ground states and resonances (see [4, 34] for reviews), the local decay and the maximal
velocity bound. As was mentioned above, for the spin-boson model (see below), a uniform bound,
〈ψt, eδNψt〉 ≤ C(ψ0) < ∞, δ > 0, on the number of photons, on a dense set of ψ0’s, was recently
proven in the remarkable paper [11], which gives substance to our conjecture that the bound (1.20)
holds for a dense set of states.

Spin-boson model. Another example of the particle system, and the simplest one, is the spin-
boson model, describing an idealized two-level atom, with state space Hp = C

2, the hamiltonian
Hp = εσ3, where σ1, σ2, σ3 are the usual 2 × 2 Pauli matrices, and ε > 0 is an atomic energy.

The coupling family is given by g(k) = ωµκ(k)σ+, σ± = 1
2 (σ

1 ∓ iσ2). In this case, g satisfies (1.10)
with η = 1. For the spin-boson model, we can take Σ = ∞.

Approach and organization of the paper. In this paper, as in earlier works, we use the method
of propagation observables, originating in the many body scattering theory ([36, 37, 32, 25, 41, 12],
see [13, 31] for a textbook exposition and a more recent review), and extended to the non-relativistic
quantum electrodynamics in [14, 24, 16, 17, 18, 19] and to the P (ϕ)2 quantum field theory, in [15].
We formalize this method in the next section.

After that we prove key propagation estimates in Sections 3 and 4. Instead of |y|, these estimates
involve the operator bǫ defined as bǫ :=

1
2(v(k) · y + y · v(k)), where v(k) := k

ω+ǫ , for ǫ = t−κ, with
some κ > 0. Since the vector field v(k) is Lipschitz continuous and therefore generates a global
flow, the operator bǫ is self-adjoint. We show in Section 6 that these propagation estimates give
the estimates (1.17) and (1.19). (The operator bǫ was considered in [I.M. Sigal and A. Soffer,
Unpublished, 2004], as a regularization of the non-self-adjoint operator b0 used in [24]. We could
have also used the operators bǫ, with 0 < ǫ < γ0 := dist(∆, σp(Hel)) constant, b :=

1
2 (

k
ω · y + k

ω · y),
or b̃ := 1

2 (k · y + k · y). Using bǫ avoids some (trivial) technicalities, as compared to the other two
operators. At the expense of slightly lengthier computations but gaining simpler technicalities, one
can also modify bǫ to make it bounded, by multiplying it with the cut-off function χ|y|≤c̄t, with c̄ > 1
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such that the maximal velocity estimate (1.9) holds, or use the smooth vector field v(k) := k√
ω2+ǫ2

,

instead of v(k) := k
ω+ǫ .)

Theorem 1.3 is proven in Section 5. As it is standard in the scattering theory, to prove the
asymptotic completeness, we establish the existence of the Deift-Simon wave operatorW+, mapping
solutions of the Schrödinger equation into the scattering data (see [14, 17, 24] and [35, 25, 41, 12] for
earlier works). We prove the existence of W+ in Subsection 5.2 and then deduce from it Theorem
1.3 in Subsection 5.4. A low momentum bound of [9] and some standard technical statements are
given in Appendices A, B and C.

The paper is essentially self-contained. In order to make it more accessible to non-experts, we
included Supplement I giving standard definitions, proof of the existence and properties of the wave
operators, and Supplement II defining and discussing the creation and annihilation operators.

Notations. For functions A and B, we will use the notation A . B signifying that A ≤ CB for
some absolute (numerical) constant 0 < C < ∞. The symbol E∆ stands for the characteristic
function of a set ∆, while χ·≤1 denotes a smoothed out characteristic function of the interval
(−∞, 1], that is it is in C∞(R), is non-decreasing, and = 1 if x ≤ 1/2 and = 0 if x ≥ 1. Moreover,
χ·≥1 := 1− χ·≤1 and χ·=1 stands for the derivative of χ·≥1. Given a self-adjoint operator a and a
real number α, we write χa≤α := χ a

α
≤1, and likewise for χa≥α. Finally, D(A) denotes the domain

of an operator A.

Acknowledgements. The first author is grateful to Jean-François Bony, Jürg Fröhlich and Chris-
tian Gérard for useful discussions. The last author is grateful to Volker Bach, Jean-François Bony,
Jürg Fröhlich, Marcel Griesemer and Avy Soffer for many discussions and collaboration. His re-
search was supported in part by NSERC under Grant No. NA7901.

2. Method of propagation observables

Many steps of our proof use the method of propagation observables which we formalize in what
follows. In this section we consider the Hamiltonian (1.1) and assume (1.10) and (1.11). Let
ψt = e−itHψ0. The method reduces propagation estimates for our system say of the form

∫ ∞

0
dt‖G1/2

t ψt‖2 . ‖ψ0‖2#, (2.1)

for some norm ‖·‖# ≥ ‖·‖, to differential inequalities for certain families φt of positive, one-photon
operators on the one-photon space L2(R3). Let

dφt := ∂tφt + i[ω, φt],

and let ν(ρ) ≥ 0 be determined by the estimate (1.14). We isolate the following useful class of
families of positive, one-photon operators:

Definition 2.1. A family of positive operators φt on L2(R3) will be called a one-photon weak
propagation observable, if it has the following properties

• there are δ ≥ 0 and a family pt of non-negative operators, such that

‖ω−δ/2φtω
−δ/2‖ . t−ν(δ) and dφt ≥ pt +

∑

finite

remi, (2.2)

where remi are one-photon operators satisfying

‖ω−ρi/2 remi ω
−ρi/2‖ . t−λi , (2.3)

for some ρi and λi, s.t. λi > 1 + ν(ρi),
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• for some λ′ > 1 + ν(δ) and with η satisfying (1.11),

( ∫
‖ηφtg‖2Hp

ω−δd3k
) 1

2 . t−λ
′
. (2.4)

(Here φt acts on g as a function of k.)

Similarly, a family of operators φt on L2(R3) will be called a one-photon strong propagation
observable, if

dφt ≤ −pt +
∑

finite

remi, (2.5)

with pt ≥ 0, remi are one-photon operators satisfying (2.3) for some λi > 1+ ν(ρi), and (2.4) holds
for some λ′ > 1 + ν(δ).

The following proposition reduces proving inequalities of the type of (2.1) to showing that φt is
a one-photon weak or strong propagation observable, i.e. to one-photon estimates of dφt and φtg.

Proposition 2.2. If φt is a one-photon weak (resp. strong) propagation observable, then we have
either the weak estimate, (2.1), or the strong propagation estimate,

〈ψt,Φtψt〉+
∫ ∞

0
dt‖G1/2

t ψt‖2 . ‖ψ0‖2♦ + ‖ψ0‖2∗, (2.6)

with the norm ‖ψ0‖2# := ‖ψ0‖2♦ + ‖ψ0‖2∗, where Φt := dΓ(φt) and Gt := dΓ(pt), on the subspace

f(H)H ⊂ H, with f ∈ C∞
0 ((−∞,Σ)). Here ‖ψ0‖∗ := ‖ψ0‖δ and ‖ψ0‖♦ =

∑ ‖ψ0‖ρi .
Before proceeding to the proof we present some useful definitions. Consider families Φt of oper-

ators on H and introduce the Heisenberg derivative

DΦt := ∂tΦt + i
[
H,Φt

]
,

with the property

∂t〈ψt,Φtψt〉 = 〈ψt,DΦtψt〉. (2.7)

Definition 2.3. A family of operators Φt on a subspaceH1 ⊂ H will be called a (second quantized)
weak propagation observable, if for all ψ0 ∈ H1, it has the following properties

• supt〈ψt,Φtψt〉 . ‖ψ0‖2∗;
• DΦt ≥ Gt +Rem, where Gt ≥ 0 and

∫∞
0 dt〈ψt,Remψt〉 . ‖ψ0‖2♦,

for some norms ‖ψ0‖∗, ‖ · ‖♦ ≥ ‖ · ‖. Similarly, a family of operators Φt will be called a strong
propagation observable, if it has the following properties

• Φt is a family of non-negative operators;
• DΦt ≤ −Gt +Rem, where Gt ≥ 0 and

∫∞
0 dt〈ψt,Remψt〉 . ‖ψ0‖2♦,

for some norm ‖ · ‖♦ ≥ ‖ · ‖.
If Φt is a weak propagation observable, then integrating the corresponding differential inequality

sandwiched by ψt’s and using the estimate on 〈ψt,Φtψt〉 and on the remainder Rem, we obtain the
(weak propagation) estimate (2.1), with ‖ψ0‖2# := ‖ψ0‖2♦ + ‖ψ0‖2∗. If Φt is a strong propagation

observable, then the same procedure leads to the (strong propagation) estimate

〈ψt,Φtψt〉+
∫ ∞

0
dt‖G1/2

t ψt‖2 . ‖ψ0‖2♦ + ‖ψ0‖2∗. (2.8)

Proof of Proposition 2.2. Let Φt := dΓ(φt). To prove the above statement we use the relations

D0dΓ(φt) = dΓ(dφt), i[I(g),dΓ(φt)] = −I(iφtg), (2.9)

where D0 is the free Heisenberg derivative,

D0Φt := ∂tΦt + i[H0,Φt],
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valid for any family of one-particle operators φt, to compute

DΦt = dΓ(dφt)− I(iφtg). (2.10)

Denote 〈A〉ψ := 〈ψ,Aψ〉. Applying the Cauchy-Schwarz inequality, we find the following version
of a standard estimate

|〈I(g)〉ψ | ≤
( ∫

‖ηg‖2Hp
ω−δd3k

) 1
2‖η−1ψ‖‖ψ‖dΓ(ωδ ). (2.11)

Using that ψt = f1(H)ψt, with f1 ∈ C∞
0 ((−∞,Σ)), f1f = f, and using (1.11), we find ‖η−1ψt‖

. ‖ψt‖. Taking this into account, we see that the equations (2.11), (2.4) and (1.15) yield

|〈I(iφtg)〉ψt | . t−λ
′+ν(δ)‖ψ0‖2δ . (2.12)

Next, using (2.3), we find remi ≤ ‖ω−ρi/2 remi ω
−ρi/2‖ωρi . t−λiωρi . This gives dΓ(remi) .

t−λidΓ(ωρi), which, due to the bound (1.14), leads to the estimate

〈dΓ(remi)〉ψt . t−λi+ν(ρi)‖ψ0‖2ρi . (2.13)

In the strong case, (2.5) and (2.10) imply

DΦt ≤ −dΓ(pt) +
∑

finite

dΓ(remi)− I(iφtg), (2.14)

which together with (2.12) and (2.13) implies that Φt is a strong propagation observable.
In the weak case, (2.2) and (2.10) imply

DΦt ≥ dΓ(pt) +
∑

finite

dΓ(remi)− I(iφtg). (2.15)

Next, since φt ≤ ‖ω−δ/2φtω−δ/2‖ωδ . t−ν(δ)ωδ, we have dΓ(φt) . t−ν(δ)dΓ(ωδ). Using this estimate
and using again the bound (1.14), we obtain

〈ψt,Φtψt〉 . t−ν(δ)〈dΓ(ωδ)〉ψt . ‖ψ0‖2δ . (2.16)

Hence Φt is a weak propagation observable. �

Proposition 2.4. Let φt be a one-photon family satisfying

• either, for some δ ≥ 0 ,

‖ω−δ/2φtω
−δ/2‖ . t−ν(δ) and dφt ≥ pt − dφ̃t + rem, (2.17)

or
dφt ≤ −pt + dφ̃t +

∑

finite

remi, (2.18)

where pt ≥ 0, remi are one-photon operators satisfying (2.3), and φ̃t is a weak propagation
observable,

• (2.4) holds.

Then, depending on whether (2.17) or (2.18) is satisfied, Φt := dΓ(φt) is a weak, or strong,
propagation observable, with the norm ‖ψ0‖♦ = ‖ψ0‖ρ, on the subspace f(H)H ⊂ H, with f ∈
C∞
0 ((−∞,Σ)), and therefore we have either the weak or strong propagation estimates, (2.1) or

(2.8), on this subspace.

Proof. Given Proposition 2.4 and its proof, the only term we have to control is dΓ(dφ̃t). Using that

φ̃t is a weak propagation observable and using (2.7), (2.10) and (2.12) for Φ̃t := dΓ(φ̃t), we obtain

|
∫ ∞

0
dt〈Φ̃t〉ψt | . ‖ψ0‖2#, (2.19)

with ‖ψ0‖2# := ‖ψ0‖2♦+‖ψ0‖2∗ (‖ψ0‖♦ and ‖ψ0‖∗ might be different now), which leads to the desired
estimates. �
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Remarks.

1) Proposition 2.2 reduces a proof of propagation estimates for the dynamics (1.6) to estimates
involving the one-photon datum (ω, g) (an ‘effective one-photon system’), parameterizing the hamil-
tonian (1.1). (The remaining datum Hp does not enter our analysis explicitly, but through the
bound states of Hp which lead to the localization in the particle variables, (1.5)).

2) The condition on the remainder in (2.2) can be weakened to rem = rem′ + rem′′, with rem′

and rem′′ satisfying (2.3) and

|rem′′| . χ|y|≥c̄t, (2.20)

for c̄ as in (1.9), respectively. Moreover, (2.3) can be further weakened to
∫ ∞

0
|〈ψt,dΓ(remi)ψt〉| <∞. (2.21)

3) An iterated form of Proposition 2.4 is used to prove Theorem 1.1.

3. The first propagation estimate

Let ν(δ) ≥ 0 be the same as in (1.14) and recall the operator bǫ defined in the introduction. We
write it as

bǫ :=
1

2
(θǫ∇ω · y + y · ∇ωθǫ), where θǫ :=

ω

ωǫ
, ωǫ := ω + ǫ, ǫ = t−κ. (3.1)

Theorem 3.1. Assume (1.10) with µ > −1/2 and (1.11). Let ν(−1)− ν(0) < κ < 1.
If either β < 1, or β = 1 and c < 1, and

β > max((3/2 + µ)−1, (1 + κ)/2, 1 − κ+ ν(−1)− ν(0)), (3.2)

then for any initial condition ψ0 ∈ f(H)D(dΓ(ω−1)1/2), for some f ∈ C∞
0 ((−∞,Σ)), the Schrödinger

evolution, ψt, satisfies, for any a > 1, the following estimates
∫ ∞

1
dt t−β−aν(0)‖dΓ(χ bǫ

ctβ
=1)

1
2ψt‖2 . ‖ψ0‖2−1. (3.3)

If ν(0) = 0, µ > 0, and β satisfies (3.2) and β < 1
c̄ , with c̄ > 1, then, with the notation

χ ≡ χ
(
|y|
c̄t

)2≤1
,

∫ ∞

1
dt t−β‖dΓ(θ1/2ǫ χχ bǫ

ctβ
=1χθ

1/2
ǫ )

1
2ψt‖2 . ‖ψ0‖20. (3.4)

Proof. We will use the method of propagation observables outlined in Section 2. We consider the
one-parameter family of one-photon operators

φt := t−aν(0)χv≥1, v :=
bǫ
ctβ

, (3.5)

where a > 1. To show that φt is a weak one-photon propagation observable, we obtain differential
inequalities for φt. We use the notation χβ ≡ χv≥1. To compute dφt, we use the expansion

dφt = t−aν(0)(dv)χ′
β +

2∑

i=1

remi, rem1 := t−aν(0)[dχβ − (dv)χ′
β ], rem2 := −aν(0)t−1φt. (3.6)

Using the definitions in (3.1), we compute

dv =
θǫ
ctβ

− βbǫ
ctβ+1

+
1

ctβ
∂tbǫ. (3.7)
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Next, we have ∂tbǫ =
κ

2t1+κ (ω
−1
ǫ θǫ∇ω ·y+ h.c.) on D(bǫ), which, due to the relation 1

2(ω
−1
ǫ θǫ∇ω ·

y + h.c.) = ω
−1/2
ǫ bǫω

−1/2
ǫ , becomes

∂tbǫ =
κ

t1+κ
ω−1/2
ǫ bǫω

−1/2
ǫ . (3.8)

Using that (see Lemma B.1 of Appendix B)

ω−1/2
ǫ bǫω

−1/2
ǫ χ′

β = ω−1/2
ǫ bǫχ

′
βω

−1/2
ǫ +O(tκ),

and that bǫ ≥ 0 on suppχ′
β, we obtain

1

ctβ
∂tbǫχ

′
β ≥ − const

t1+β−κ
. (3.9)

The relations (3.6)–(3.9), together with bǫ
ctβ
χ′
β ≤ χ′

β, imply

dφt ≥ (
θǫ
ctβ

− β

t
)χ′
β +

3∑

i=1

remi, (3.10)

where rem1 and rem2 are given in (3.6) and

rem3 = O(t−1−β+κ−aν(0)). (3.11)

This, together with θǫ = 1− t−κ

ωǫ
and ω−1

ǫ χ′
β = ω

−1/2
ǫ χ′

βω
−1/2
ǫ +O(t−β+κ) (see again Lemma B.1 of

Appendix B), implies

dφt ≥ (
1

ctβ
− β

t
)χ′
β +

4∑

i=1

remi, rem4 :=
1

ctβ+κ+aν(0)
ω−1/2
ǫ χ′

βω
−1/2
ǫ . (3.12)

We have ‖φt‖ ≤ t−aν(0) and therefore, due to (1.14), the first estimate in (2.2) holds. If either

β < 1 (and t sufficiently large), or β = 1 and c < 1, then pt := ( 1
ctβ

− β
t ) is non-negative, which

implies the second estimate in (2.2). Thus (2.2) holds. By the definition (3.6) and Corollary B.3
of Appendix B for i = 1, and by an explicit form for i = 2, 3, 4, we have the estimates

‖ω−ρi/2 remi ω
−ρi/2‖ . t−λi , (3.13)

i = 1, 2, 3, 4, with ρ1 = ρ2 = ρ3 = 0, ρ4 = −1, λ1 = 2β − κ + aν(0), λ2 = 1 + aν(0), λ3 =
1+β−κ+aν(0), and λ4 = β+κ+aν(0). We remark here that the i = 2 term is absent if ν(0) = 0.

The relation (3.13) together with the assumption κ ≤ 1 implies (2.3) with ρ = ρi and λ = λi,
for rem = remi, provided λi > 1 + ν(ρi).

Finally, (2.4) with λ′ < aν(0) + (32 + µ)β, holds, by [9, Lemma 3.1], with bǫ instead of |y| (See
Lemma B.6 in Appendix B of the present paper.). Hence φt is a weak one-photon propagation
observable, provided 2β > 1 + κ+ ν(0)− aν(0), β − κ > ν(0)− aν(0), β + κ > 1 + ν(−1)− aν(0),
and (32 +µ)β > 1. Therefore, by Proposition 2.2 and under the conditions on the parameters above,

∫ ∞

1
dt t−β−aν(0)‖dΓ(χ′

β)
1
2ψt‖2 . ‖ψ0‖2−1. (3.14)

This, due to the definition of χ′
β, implies the estimate (3.3).

We now prove (3.4). We use again the notation χβ ≡ χv≥1, where v := bǫ
ctβ

, and we denote

w := ( |y|c̄t )
2. We consider the one-parameter family of one-photon operators

φt := χχβχ, (3.15)
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and show that φt is a weak one-photon propagation observable. We have ‖φt‖ ≤ 1 and therefore,
due to (1.14) and the assumption ν(0) = 0, the first estimate in (2.2) holds. Now, we show the
second estimate in (2.2). To compute dφt, we use the expansion

dφt = χ(dv)χ′
βχ+ χ′(dw)χβχ+ χχβ(dw)χ

′ +
∑

i=1,2

remi, (3.16)

where

rem1 := χ(dχβ − (dv)χ′
β)χ, rem2 := (dχ− (dw)χ′)χβχ+ h.c.. (3.17)

As in (3.7)–(3.9), we have

χ(dv)χ′
βχ ≥ χ(

θǫ
ctβ

− βbǫ
ctβ+1

)χ′
βχ+ rem3, (3.18)

where rem3 = O(t−1−β+κ). We consider the term − βbǫ
ctβ+1 in (3.18). Since bǫ = θ

1/2
ǫ bθ

1/2
ǫ , we obtain,

using in particular Lemma B.1 of Appendix B, that

χbǫχ
′
βχ = χ(χ′

β)
1/2θ1/2ǫ bθ1/2ǫ (χ′

β)
1/2χ

= θ1/2ǫ (χ′
β)

1/2χbχ(χ′
β)

1/2θ1/2ǫ +O(tκ),

and the maximal velocity cut-off gives χbχ ≤ c̄t. Thus, commuting again χ through θ
1/2
ǫ and

(χ′
β)

1/2, we obtain

−χ βbǫ
ctβ+1

χ′
βχ ≥ − βc̄

ctβ
χθ1/2ǫ χ′

βθ
1/2
ǫ χ+O(

1

t1+β−κ
). (3.19)

Proceeding in the same way for the term θǫ
ctβ

in (3.18) gives

χ(
θǫ
ctβ

− βbǫ
ctβ+1

)χ′
βχ ≥ 1− βc̄

ctβ
χθ1/2ǫ χ′

βθ
1/2
ǫ χ+O(

1

t2β−κ
). (3.20)

Next, we compute dw = 2( b
(c̄t)2

− ( |y|c̄t )
2 1
t ), where, recall, b =

1
2(∇ω · y + h.c.). By Lemma B.1 of

Appendix B, we have

χ′(dw)χβχ+ χχβ(dw)χ
′ = −2(χβ)

1/2(−χ′χ)1/2(dw)(−χ′χ)1/2(χβ)
1/2 +O(

1

t1+β−κ
). (3.21)

Using that dw ≤ (1c̄ − 1)1t on the support of χ′ and that χ′ ≤ 0 and c̄ > 1, we obtain

(−χ′χ)1/2(dw)(−χ′χ)1/2 ≥ (1− 1

c̄
)
1

t
(−χ′χ). (3.22)

The relations (3.16), (3.18), (3.21) and (3.22) imply

dφt ≥ pt + p̃t −
∑

i=1,2,3,4

remi, (3.23)

where rem4 = O( 1
t2β−κ ) and

pt :=
1− βc̄

ctβ
θ1/2ǫ χχ′

βχθ
1/2
ǫ , (3.24)

p̃t := (1− 1

c̄
)
1

t
χ
1/2
β (−χ′)χχ1/2

β . (3.25)

The terms pt and p̃t are non-negative, provided β < 1/c̄ and c̄ > 1. Together with the assumption
ν(0), this implies (2.2). Next, we claim the estimates

‖remi‖ . t−λ, (3.26)
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i = 1, 2, 3, 4, with λ = 2β−κ. Indeed, the definition (3.17) and Corollary B.3 of Appendix B imply
(3.26) for i = 1. The estimate for i = 3, 4 are obvious. To estimate rem2, we write

(dχ− (dw)χ′)χβχ = (dχ− (dw)χ′)
bǫ
ctβ

χ̃βχ,

where χ̃β = ( bǫ
ctβ

)−1χβ, and bǫ = θǫb+ iǫω−2
ǫ . Using that, by Lemma B.4 of Appendix B,

∥∥dχ− (dw)χ′‖ . t−1,

and commuting b through χ̃β gives

(dχ− (dw)χ′)χβχ =
1

ctβ
(dχ− (dw)χ′)θǫχ̃βbχ+O(

1

t1+β−κ
). (3.27)

By Lemma B.4, we also have ∥∥(dχ− (dw)χ′)ω‖ . t−2.

Combining this with (3.27) and the estimates ω−1
ǫ = O(tκ) and bχ = O(t), we obtain

(dχ− (dw)χ′)χβχ = O(
1

t1+β−κ
), (3.28)

and hence the estimate for i = 2 follows.
The relation (3.26) implies (2.3) with λ = 2β − κ, for rem = remi, provided 2β − κ > 1. Finally,

as above, (2.4) holds with λ′ < aν(0)+(32+µ)β by Lemma B.6 of Appendix B. This yields (3.4). �

4. The second propagation estimate

We introduce the norm 〈g〉 :=
∑

|α|≤2 ‖η|α|∂αg‖L2(R3,Hp), for the coupling function g.

Theorem 4.1. Assume (1.10) with µ > −1/2, (1.11) and (1.13). Let 〈g〉 be sufficiently small,
ν(−1) < κ < 1, and 0 < α < 1. Let f ∈ C∞

0 ((Egs,Σ)) and ψ0 ∈ D := f(H)D(dΓ(〈y〉)). Then the
Schrödinger evolution, ψt, satisfies the estimate

‖Γ(χbǫ≤c′tα)
1
2ψt‖ . t−δ‖ψ0‖dΓ(〈y〉)2 , (4.1)

for 0 ≤ δ < 1
2 min(κ− ν(−1), 1− κ, 1 − α− ν(0)) and any c′ > 0.

We define Bǫ := dΓ(bǫ). As is [9, Proposition B.3 and Remark B.4], one verifies that D ⊂
D(dΓ(〈y〉)) ⊂ D(Bǫ). The proof of Theorem 4.1 is based on the following result (cf. [36, 32]).

Proposition 4.2. Under the conditions of Theorem 4.1, the evolution ψt = e−iHtψ0 obeys

‖χBǫ≤ctψt‖ . t−δ
′‖ψ0‖dΓ(〈y〉)2 , (4.2)

where δ′ := 1
2 min(1−C〈g〉

c − 1− κ, 1 − κ, κ− ν(−1)).

Remark. The constant C is independent of γ0 := dist(Egs, supp f) (but the implicit constant
appearing in the right hand side of (4.2) does depend on γ0).

Proof. Let ǫ > 0 be a constant. Let ρ < min(1−C〈g〉
c − 1, 1) where C > 0 is a positive constant

defined below. Consider the propagation observable

Φt := −tρϕ
(
Bǫ
ct

)
,

where ϕ
(
Bǫ

ct

)
:=

(
Bǫ

ct − 2
)
χBǫ≤ct. Note that ϕ ≤ 0, but ϕ′ ≥ 0. Let ϕ′ = ϕ2

1. The relations below
are understood in the sense of quadratic forms on D. The IMS formula gives

DΦt =M +R, (4.3)
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where M := −tρϕ1D((ct)−1Bǫ)ϕ1 − ρt−1+ρϕ and

R :=
1

ct1−ρ
[[B1, ϕ1], ϕ1] + tρ

(
[H,ϕ] − 1

2ct
(ϕ′B1 +B1ϕ

′)
)
, (4.4)

where B1 := i[H,Bǫ]. First, we compute the main term, M , in (4.3). We leave out a standard
proof of f(H) ∈ C1(Bǫ) (see e.g. [20, Theorem 8]) and standard domain questions such as that
D ⊂ D(Bǫ). We have

D

(
Bǫ
ct

)
=

1

ct
DBǫ −

1

t

Bǫ
ct
. (4.5)

The computations below are understood in the sense of quadratic forms on D. Since DBǫ =
i[Hf , Bǫ] = Nǫ, where Nǫ := dΓ(θǫ), we have

DBǫ = Nǫ + Ĩ , (4.6)

where Ĩ := i[I(g), Bǫ]. To estimate the operator Nǫ from below, we use that θǫ = 1− ǫ
ωǫ
, to obtain

Nǫ ≥ N − ǫdΓ(ω−1
ǫ ). (4.7)

Next, we estimate the term ϕ1dΓ(ω
−1
ǫ )ϕ1. Using

[dΓ(ω−1
ǫ ), i(

Bǫ
ct

− z)−1] = −(ct)−1(
Bǫ
ct

− z)−1dΓ(θǫω
−2
ǫ )(

Bǫ
ct

− z)−1,

we obtain that

‖[dΓ(ω−1
ǫ ), (

Bǫ
ct

− z)−1](N + 1)−1‖ . t−1ǫ−2|Imz|−2,

and hence, since Bǫ commutes with N , the Helffer-Sjöstrand formula shows that

‖[dΓ(ω−1
ǫ ), ϕ1](N + 1)−1‖ . t−1ǫ−2.

Since, in addition, ‖dΓ(ω−1
ǫ )u‖ ≤ ‖dΓ(ω−1)u‖, we deduce that

‖dΓ(ω−1
ǫ )ϕ1(dΓ(ω

−1) + t−1ǫ−2(N + 1))−1‖ . 1,

and therefore, by interpolation and (1.14), we arrive at

〈ϕ1dΓ(ω
−1
ǫ )ϕ1〉ψt . tν(−1)‖ψ0‖2−1 + t−1+ν(0)ǫ−2‖ψ0‖20. (4.8)

By the condition µ > −1/2 and (2.11) (with δ = 0), we have Ĩ ≥ −C〈g〉(N+η−2+1). Combining
this with the definition of M , (1.11), (4.5), (4.6), (4.7) and (4.8), we obtain

〈M〉ψt ≤− 1

ct1−ρ
〈ϕ1[(1− C〈g〉)N − t−1Bǫ − C〈g〉]ϕ1 + cρϕ〉ψt

+
C

t1−ρ
(ǫtν(−1)‖ψ0‖2−1 + t−1+ν(0)ǫ−1‖ψ0‖20). (4.9)

Let Ω := 1 ⊕ 0 ⊕ . . . be the vacuum in F and PΩ, the orthogonal projection on the subspace
Hp ⊗ Ω, PΩΨ := 〈Ω,Ψ〉F ⊗ Ω. We now use the following

Lemma 4.3. Assume (1.10) with µ > −1/2, (1.11) and (1.13). Let 〈g〉 be sufficiently small and
f ∈ C∞

0 ((Egs,Σ)). Then

‖PΩe
−itHf(H)u‖ . t−s‖〈B̃〉u‖, s < 1/2, (4.10)

where B̃ = dΓ(b̃) with, recall, b̃ = 1
2(k · y + y · k).
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Proof. We use the local decay properties established in [21] and [7]. Let cj := (ej + ej+1)/2 and
δj := ej+1 − ej. We decompose the support of f into different regions, writing

f(H) = f(H)χH≤c0 +
∑

finite

f(H)χj(H), (4.11)

where χj(H) denotes a smoothed out characteristic function of the interval [cj−δj/4, cj+1+δj+1/4].

Using PΩ = PΩ〈B̃〉, and [21], we obtain

‖PΩe
−itHf(H)χH≤c0u‖ = ‖〈B̃〉−1e−itHf(H)χH≤c0u‖ . t−s‖〈B̃〉u‖, (4.12)

for s < 1/2.
To estimate ‖PΩe

−itHf(H)χj(H)u‖, we let χ̃j(H) := f(H)χj(H). In [7], assuming (1.13),

a conjugate operator B̃j is constructed in such a way that the commutators [χ̃j(H), B̃j ] and

[[χ̃j(H), B̃j ], B̃j ] are bounded. Moreover, the Mourre estimate

χ̃j(H)[H, iB̃j ]χ̃j(H) ≥ m0χ̃j(H)2,

holds for some positive constant m0. By an abstract result of [32], this implies
∥∥〈B̃j〉−se−itH χ̃j(H)〈B̃j〉−s

∥∥ . t−s,

for s < 1. Since the operator B̃j is of the form B̃j = B̃ +Mj, where Mj is a bounded operator, it
then follows that ∥∥〈B̃〉−se−itH χ̃j(H)〈B̃〉−s

∥∥ . t−s,

and hence, using again that PΩ〈B̃〉 = PΩ, we obtain

‖PΩe
−itH χ̃j(H)u‖ = ‖〈B̃〉−1e−itH χ̃j(H)u‖ . t−s‖〈B̃〉u‖. (4.13)

Equations (4.11), (4.12) and (4.13) give (4.10). �

Together with ϕ1PΩ = PΩ, the estimate (4.10) gives

〈ϕ1PΩϕ1〉ψt = 〈PΩ〉ψt . t−2s‖〈B̃〉ψ0‖2 . t−2s‖ψ0‖2B̃2 . (4.14)

Combining this with N ≥ 1− PΩ and (4.9), we obtain

〈M〉ψt ≤− 1

ct1−ρ
〈ϕ1[1− t−1Bǫ − C〈g〉]ϕ1 + cρϕ〉ψt

+
C

t1−ρ
(ǫtν(−1)‖ψ0‖2−1 + t−1+ν(0)ǫ−1‖ψ0‖20 + t−2s‖ψ0‖2B̃2). (4.15)

Now, using the definition ϕ
(
Bǫ

ct

)
:=

(
Bǫ

ct − 2
)
χBǫ≤ct, we compute

Bǫ
ct
ϕ′ + ρ(−ϕ) = Bǫ

ct
(χ+ (

Bǫ
ct

− 2)χ′)− ρ(
Bǫ
ct

− 2)χ

= ((1 − ρ)
Bǫ
ct

+ 2ρ)χ+
Bǫ
ct

(
Bǫ
ct

− 2)χ′. (4.16)

Next, using that Bǫ

ct χ ≤ χ, Bǫ

ct (
Bǫ

ct − 2)χ′ ≤ (Bǫ

ct − 2)χ′, we find furthermore

Bǫ
ct
ϕ′ + ρ(−ϕ) ≤ (1 + ρ)χ+ (

Bǫ
ct

− 2)χ′ = ρχ+ ϕ′ ≤ (1 + ρ)ϕ′. (4.17)

This, together with (4.15), with ϕ2
1 = ϕ′, gives

〈M〉ψt ≤−
[σ
c
− 1− ρ

] 1

t1−ρ
〈ϕ′〉ψt

+
C

t1−ρ
(ǫtν(−1)‖ψ0‖2−1 + t−1+ν(0)ǫ−1‖ψ0‖20 + t−2s‖ψ0‖2dΓ(〈y〉)2 ), (4.18)

where σ := 1− C〈g〉.
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Next, we show that the remainder, R, in (4.3) is bounded as

‖(1 + η−2 +N)−1/2R(1 + η−2 +N)−1/2‖ . t−2ǫ−1. (4.19)

Indeed, proceeding as in the proof of Lemma B.2, using the Helffer-Sjöstrand formula, one verifies
that

‖(1 + η−2 +N)−1/2R(1 + η−2 +N)−1/2‖
. t−2‖(1 + η−2 +N)−1/2B2(1 + η−2 +N)−1/2‖, (4.20)

where B2 := [Bǫ, [Bǫ,H]]. Now, an elementary computation (see (2.9)) gives B2 = dΓ(ǫθǫω
−2
ǫ ) +

I(b2ǫg). Using ǫθǫω
−2
ǫ ≤ ǫ−1 and ‖I(ηb2ǫg)(1 +N)−1/2‖ . ‖ηb2ǫg‖ . ǫ−1 since µ > −1/2, we obtain

‖(1 + η−2 +N)−1/2B2(1 + η−2 +N)−1/2‖ . t−2ǫ−1, (4.21)

which together with (4.20) implies (4.19). Together with Equations (4.3) and (4.18) and the fact
that ‖η−2f(H)‖ . 1, this implies

〈DΦt〉ψt ≤− (
σ

c
− 1− ρ)t−1+ρ〈ϕ′〉ψt

+ C
(
ǫtν(−1)+ρ−1‖ψ0‖2−1 + t−2+ν(0)+ρǫ−1‖ψ0‖20 + t−1+ρ−2s‖ψ0‖2B̃2

)
. (4.22)

Thus, choosing s such that 2s − ρ > 0, (4.22), together with the observation Φt ≥ tρχBǫ≤ct,
the conditions σ

c − 1 − ρ > 0, ρ < 1 ≤ 2 − ν(0), the trivial inequalities ‖ψ0‖20 ≤ ‖ψ0‖2dΓ(〈y〉),
‖ψ0‖2B̃2 . ‖ψ0‖2dΓ(〈y〉)2 , and Hardy’s inequality ‖ψ0‖2−1 . ‖ψ0‖2dΓ(〈y〉) implies that

tρ〈χ〉ψt ≤ 〈Φt〉ψt = 〈Φt〉ψt |t=0 +

t∫

0

〈DΦs〉ψsds

≤ 〈−BǫχBǫ≤0〉ψ0 + C(ǫ−1 + ǫtρ+ν(−1) + 1)‖ψ0‖2dΓ(〈y〉)2 .

Using 〈−BǫχBǫ≤0〉ψ0 . ‖ψ0‖2dΓ(〈y〉), and choosing ǫ = t−κ, we find

〈χ〉ψt ≤ C(t−ρ+κ + tν(−1)−κ + t−ρ)‖ψ0‖2dΓ(〈y〉)2 ,

which in turn gives (4.2). �

Proof of Theorem 4.1. Since N := dΓ(1) and Bǫ := dΓ(bǫ), commute we have

Γ(χbǫ≤c′tα) ≤ χBǫ≤c′Ntα = χBǫ≤c′Ntα(χN≤c′′tγ + χN≥c′′tγ )

≤ χBǫ≤ctν + χN≥c′′tγ , (4.23)

where ν := α+ γ and c := c′c′′. We choose c′′ ≪ 1/c′, so that 0 < c≪ 1. Next, we have

‖χN≥c′′tγψt‖ ≤ (c′′)−
γ
2 t−

γ
2 ‖χN≥c′′tγN

1
2ψt‖

≤ (c′′)−
γ
2 t−

γ
2 ‖N 1

2ψt‖,
which, together with (1.14) (with ρ = 0), implies

‖χN≥c′′tγψt‖ . t−
γ
2
+

ν(0)
2 ‖ψ0‖0. (4.24)

The inequality (4.23) with ν = 1, Proposition 4.2 and the inequality (4.24) (with γ = 1−α) imply
the estimate (4.1). �
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5. Proof of Theorem 1.3

5.1. Partition of unity. We begin with a construction of a partition of unity which separates
photons close to the particle system from those departing it. Following [14, 17] (cf. the many-body
scattering construction), it is defined by first constructing a partition of unity (j0, j∞), j20+j

2
∞ = 1,

on the one-photon space, h = L2(R3), with j0 localizing a photon to a region near the particle system
(the origin) and j∞ near infinity, and then associating with it the map j : h → h ⊕ h, given by
j : h→ j0h⊕ j∞h. After that we lift the map j to the Fock space F := Γ(h) by using Γ(j) : Γ(h) →
Γ(h ⊕ h) (defined in (1.18)). Next, we consider the adjoint map j∗ : h0 ⊕ h∞ → j∗0h0 + j∗∞h∞,
which we also lift to the Fock space F := Γ(h) by using Γ(j∗) : Γ(h⊕ h) → Γ(h). By definition, the
operator Γ(j) has the following properties

Γ(j)∗ = Γ(j∗), Γ(j̃)Γ(j) = Γ(j̃j). (5.1)

Since j∗j = j20 + j2∞ = 1, this implies the relation Γ(j)∗Γ(j) = 1, which is what we mean by a
partition of unity of the Fock space F := Γ(h).

We refine this construction further by defining the unitary map U : Γ(h ⊕ h) → Γ(h) ⊗ Γ(h),
through the relations

UΩ = Ω⊗ Ω, Ua∗(h) = [a∗(h1)⊗ 1+ 1⊗ a∗(h2)]U, (5.2)

for any h = (h1, h2) ∈ h⊕ h, and introducing the operators

Γ̌(j) := UΓ(j) : Γ(h) → Γ(h)⊗ Γ(h). (5.3)

We lift Γ(j), as well as Γ̌(j), from the Fock space F := Γ(h) to the full state space H := Hp⊗F , so

that e.g. Γ̌(j) : H → H⊗ Γ(h). Now, the partition of unity relation on H becomes Γ̌(j)∗Γ̌(j) = 1

(in particular, Γ̌(j) is an isometry).
Finally, we specify j0 to be the operator χbǫ≤ctα , with bǫ defined in the introduction, and j∞

is defined by j20 + j2∞ = 1 and is of the form χbǫ≥ctα , where ǫ := t−κ, and α and κ satisfy
1− µ/(6 + 3µ) < α < 1 and 1 + ν(−1)− α < κ < 1

2(5α − 3).

5.2. Deift-Simon wave operators. We define the auxiliary space Ĥ := H⊗F , which will serve as
our repository of asymptotic dynamics, which is governed by the hamiltonian Ĥ := H⊗1+1⊗Hf

on Ĥ. With the partition of unity Γ̌(j), we associate the Deift-Simon wave operators,

W± := s-lim
t→∞

W (t), where W (t) := eiĤtΓ̌(j)e−iHt, (5.4)

which map the original dynamics, e−iHt, into auxiliary one, e−iĤt (to be further refined later). Our
goal is to prove

Theorem 5.1. Assume (1.10) with µ > 0, (1.11) and (1.20). Then the Deift-Simon wave operators
exist on RanE(−∞,Σ)(H) and satisfy

W+Pgs = Pgs, (5.5)

and, for any smooth, bounded function f ,

W+f(H) = f(Ĥ)W+. (5.6)

Proof. We want to show that the family W (t) := eiĤtΓ̌(j)e−iHt form a strong Cauchy sequence as

t → ∞. To this end, we define χm := χN̂≤m and χm := χN̂≥m, where N̂ := N ⊗ 1 + 1 ⊗ N , the

number operator on Ĥ, so that χm + χm = 1. First, we show that, for any ψ0 ∈ D(N
1
2 ),

sup
t

‖χmW (t)ψ0‖ . m− 1
2 ‖ψ0‖N . (5.7)
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Indeed, by the assumption (1.20),

‖N̂ 1
2 eiĤtΓ̌(j)e−iHsψ0‖ . ‖N̂ 1

2 Γ̌(j)e−iHsψ0‖+ ‖Γ̌(j)e−iHsψ0‖. (5.8)

The boundedness of Γ̌(j) implies ‖Γ̌(j)e−iHtψ0‖ ≤ ‖ψ0‖ ≤ ‖ψ0‖N . Moreover, we claim that

Γ̌(j)N = N̂ Γ̌(j), (5.9)

Indeed, a straightforward computation gives Γ(j)dΓ(c) = dΓ(c)Γ(j) + dΓ(j, jc − cj), where c =
diag(c, c) : h⊕ h → h⊕ h and

dΓ(a, c)|⊗n
s h

=

n∑

j=1

a⊗ · · · ⊗ a︸ ︷︷ ︸
j−1

⊗c⊗ a⊗ · · · ⊗ a︸ ︷︷ ︸
n−j

. (5.10)

It follows from this relation and the equalities UdΓ(c) = (dΓ(c)⊗ 1+ 1⊗ dΓ(c))U that ([14, 17])

Γ̌(j)dΓ(c) = (dΓ(c)⊗ 1+ 1⊗ dΓ(c))Γ̌(j) + dΓ̌(j, jc − cj), (5.11)

where and dΓ̌(a, c) := UdΓ(a, c). For c = 1, the latter relation gives (5.9). Equation (5.9) implies

N̂
1
2 Γ̌(j) = Γ̌(j)N

1
2 , and this relation, boundedness of Γ̌(j) and the assumption (1.20) give

‖N̂ 1
2 Γ̌(j)e−iHsψ0‖ = ‖Γ̌(j)N 1

2 e−iHsψ0‖ . ‖ψ0‖N ,

and therefore, by (5.8), ‖N̂ 1
2 eiĤtΓ̌(j)e−iHsψ0‖ . ‖ψ0‖N . Since this is true uniformly in t, s, it

implies ‖N̂ 1
2W (t)ψ0‖ . ‖ψ0‖N , which yields (5.7). Equation (5.7) implies that

sup
t,t′

‖χm(W (t′)−W (t))ψ0‖ . m− 1
2 . (5.12)

Now we show that, for any m > 0 and for any ψ0 ∈ D(N
1
2 ) ∩ RanE(−∞,Σ)(H),

‖χm(W (t′)−W (t))ψ0‖ → 0, (5.13)

as t, t′ → ∞. This together with (5.12) implies that W (t) form a strong Cauchy sequence. Lemma
5.2, proven below, implies that, in order to show (5.13), it suffices to prove

‖χmf(Ĥ)(W (t′)−W (t))ψ0‖ → 0, (5.14)

to which we now proceed. We write

(W (t′)−W (t))ψ0 =

∫ t′

t
ds∂sW (s)ψ0 (5.15)

and compute ∂tW (t) = eiĤtGe−iHt, where G := i(ĤΓ̌(j)−Γ̌(j)H)+∂tΓ̌(j). We write G = G0+G1,
where

G0 := i(Ĥf Γ̌(j)− Γ̌(j)Hf ) + ∂tΓ̌(j)

and

G1 := i(I(g) ⊗ 1)Γ̌(j)− Γ̌(j)I(g). (5.16)

We consider G0. Using (Hp ⊗ 1 ⊗ 1)(1 ⊗ Γ̌(j)) = (1 ⊗ Γ̌(j))(Hp ⊗ 1) and using the notation
dj := i(ωj − jω) + ∂tj, with ω = diag(ω, ω), and (5.11), we compute readily

G0 = UdΓ(j, dj) = dΓ̌(j, dj). (5.17)

Write j′ = (j′0, j
′
∞), where j′0, j

′
∞ are the derivatives of j0, j∞ as functions of v = bǫ

ctα . We first find
a convenient decomposition of dj. Using djf = (dj0f, dj∞f), with dct = i[ω, ct] + ∂tct, (3.7) and
Corollary B.3, we compute

dj = (j′0, j
′
∞)(

θǫ
ctα

− αbǫ
ctα+1

) +O(t−2α+κ). (5.18)
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We insert the maximal velocity partition of unity χ
(
|y|
c̄t

)2≤1
+ χ

(
|y|
c̄t

)2≥1
= 1, with c̄ > 1, into this

formula and use the notation χ ≡ χ
( |y|
c̄t

)2≤1
and the relation bǫ

ctα j
′
# = O(1)j′#, valid due to the

localization of j′#, to obtain

dj =
1

ctα
θ1/2ǫ χ(j′0, j

′
∞)χθ1/2ǫ + remt, (5.19)

remt = O(t−1)χ(j′0, j
′
∞)χ+O(t−2α−κ) +O(t−α)χ

(
|y|
c̄t

)2≥1
. (5.20)

These relations give

G0 = G′
0 +Remt, (5.21)

where G′
0 :=

1
ctαUdΓ(j, ct), with ct = (c0, c∞) := (θ

1/2
ǫ χj′0χθ

1/2
ǫ , θ

1/2
ǫ χj′∞χθ

1/2
ǫ ), and

Remt := G0 −G′
0 = UdΓ(j, remt).

Next, we write A := sup‖φ̂0‖=1 |
∫ t′
t ds〈φ̂s, G0ψs〉|, where φ̂s := e−iĤsf(Ĥ)χmφ̂0. By (C.1) of

Appendix C, G′
0 satisfies

|〈φ̂, G′
0ψ〉| ≤

1

ctα
(
‖dΓ(|c0|)

1
2 ⊗ 1φ̂‖ ‖dΓ(|c0|)

1
2ψ‖

+ ‖1⊗ dΓ(|c∞|) 1
2 φ̂‖ ‖dΓ(|c∞|) 1

2ψ‖
)
. (5.22)

By the Cauchy-Schwarz inequality, (5.22) implies
∫ t′

t
ds|〈φ̂s, G′

0ψs〉| ≤
(∫ t′

t
ds‖dΓ(|c0|)

1
2 ⊗ 1φ̂s‖2

) 1
2
(∫ t′

t
ds‖dΓ(|c0|)

1
2ψs‖2

) 1
2

+
(∫ t′

t
ds‖1⊗ dΓ(|c∞|) 1

2 φ̂s‖2
) 1

2
(∫ t′

t
ds‖dΓ(|c∞|) 1

2ψs‖2
) 1

2
.

Since |c0|, |c∞| are of the form θ
1/2
ǫ χχbǫ=ctαχθ

1/2
ǫ , the minimal velocity estimate (3.4) implies

∫ ∞

1
ds s−α‖d̂Γ#(|c|)

1
2 φ̂s‖2 . ‖χmφ̂0‖20 . m‖φ̂0‖2,

where d̂Γ#(|c|)
1
2 stands for dΓ(|c0|)

1
2 ⊗ 1 or 1⊗ dΓ(|c∞|) 1

2 , and
∫ ∞

1
ds s−α‖dΓ#(|c|)

1
2ψs‖2 . ‖ψ0‖20,

with dΓ#(|c|)
1
2 = dΓ(|c0|)

1
2 or dΓ(|c∞|) 1

2 . The last three relations give

sup
‖φ̂0‖=1

|
∫ t′

t
ds〈φ̂s, G′

0ψs〉| → 0, t, t′ → ∞. (5.23)

Likewise, applying (C.2) of Appendix C first with c1 = c2 = 1, next with c1 = 1 and c2 =
χ
(
|y|
c̄t

)2≥1
, and then applying (C.1) with c0 = χj0χ and c∞ = χj∞χ, we see that Remt satisfies

|〈φ̂,Remtψ〉| . ‖N̂ 1
2 φ̂‖

(
t−2α+κ‖N 1

2ψ‖+ t−1‖dΓ(χj′∞χ)
1
2ψ‖+ t−α‖dΓ(χ2

( |y|
c̄t

)2≥1
)
1
2ψ‖

)
. (5.24)

Now, using (5.24) and the Cauchy-Schwarz inequality, we obtain

|
∫ t′

t
ds〈φ̂s,Remsψs〉| ≤

( ∫ t′

t
ds s−τ‖N̂ 1

2 φ̂s‖2
) 1

2
{(∫ t′

t
ds s−2(2α−κ)+τ‖N 1

2ψs‖2
) 1

2

+
( ∫ t′

t
ds s−2+τ‖dΓ(χj′∞χ)

1
2ψs‖2

) 1
2
+

( ∫ t′

t
ds s−2α+τ‖dΓ(χ2

( |y|
c̄t

)2≥1
)
1
2ψs‖2

) 1
2
}
. (5.25)
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Let τ > 1 and α = 2− τ . Then by the estimate (3.3),
∫ ∞

1
ds s−2+τ‖dΓ(χj′∞χ)

1
2ψs‖2 . ‖ψ0‖2−1,

provided α < 1
c̄ , and by the maximal velocity estimate (1.9),

∫ ∞

1
ds s−2α+τ‖dΓ(χ2

( |y|
c̄t

)2≥1
)
1
2ψs‖2 . ‖ψ0‖dΓ(〈y〉),

provided that α > 1 − 2γ/3, where, recall, γ < µ
2 min( c̄−1

3c̄−1 ,
1

2+µ). One verifies that c̄ > 1 can be

chosen such that the two conditions above are satisfied. Moreover, by Assumption (1.20),
∫ ∞

1
ds s−2(2α−κ)+τ‖N 1

2ψs‖2 . ‖ψ0‖N ,

provided that 5α > 3 + 2κ. This and the fact that, by Assumption (1.20), the first integral on the
r.h.s. of (5.25) converge yield

sup
‖φ̂0‖=1

|
∫ t′

t
ds〈φ̂s,Remsψs〉| → 0, t, t′ → ∞. (5.26)

Equations (5.23) and (5.26) imply

A = ‖
∫ t′

t
dsχmf(Ĥ)eiĤsG0ψs‖ → 0, t, t′ → ∞. (5.27)

Now we turn to G1. We use the definition Γ̌(j) := UΓ(j) to obtain Γ̌(j)a#(h) = Ua#(jh)Γ(j),
then (5.2), and then j∗0j0 + j∗∞j∞ = 1, to derive

Γ̌(j)a#(h) = (a#(j0h)⊗ 1+ 1⊗ a#(j∞h))Γ̌(j), (5.28)

where a# stands for a or a∗, which implies

Γ̌(j)I(g) = (I(j0g)⊗ 1+ 1⊗ I(j∞g))Γ̌(j). (5.29)

The equation (5.29) gives

G1 = (I((1 − j0)g) ⊗ 1− 1⊗ I(j∞g))Γ̌(j). (5.30)

Due to [9, Lemma 3.1] (see Appendix B, Lemma B.6), we have ‖j∞g‖L2 . t−λ, ‖(1− j0)g‖L2 . t−λ

with λ < (µ + 3
2)α. This, (2.11) (with δ = 0), and N̂

1
2 Γ̌(j) = Γ̌(j)N

1
2 imply that

‖f(Ĥ)G1(N + 1)−
1
2‖ . t−(µ+ 3

2
)α. (5.31)

This together with Assumption (1.20) implies that ‖f(Ĥ)G1ψt‖ . t−(µ+ 3
2
)α‖ψ0‖0, and hence

‖
∫ t′

t
dsf(Ĥ)eiĤsG1ψs‖ → 0, t, t′ → ∞,

provided that α > (µ + 3
2)

−1. This together with (5.27) gives (5.14), and therefore (5.13), which,
as was mentioned above, together with (5.12) shows that W (t) is a Cauchy sequence as t → ∞.
This implies the existence of W+.

Finally, the proofs of (5.5) and (5.6) are standard. We present the second one. By (5.4), we have

W±eiĤs = s-lim eiĤtΓ̌(j)e−iH(t+s) = s-lim eiĤ(t′−s)Γ̌(j)e−iHt
′
= eiĤsW+, which implies (5.6). �

Now we establish the following lemma used in the proof of Theorem 5.1.
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Lemma 5.2. Under the conditions of Theorem 5.1, for any f ∈ C∞
0 (∆), ∆ ⊂ (Egs,Σ), and

ψ0 ∈ RanE∆(H) ∩D(N
1
2 ),

‖(N̂ + 1)−
1
2 (Γ̌(j)f(H) − f(Ĥ)Γ̌(j))ψt‖ . t−α‖ψ0‖0. (5.32)

Proof. We compute, using the Helffer-Sjöstrand formula, Γ̌(j)f(H)ψt − f(Ĥ)Γ̌(j)ψt = R, where

R :=
1

π

∫
∂z̄ f̃(z)(Ĥ − z)−1(ĤΓ̌(j)− Γ̌(j)H)(H − z)−1ψt dRe z dIm z. (5.33)

We have ĤΓ̌(j) − Γ̌(j)H = G̃0 − iG1, where G̃0 := UdΓ(j, ωj − jω) and G1 := (I(g) ⊗ 1)Γ̌(j) −
Γ̌(j)I(g) was defined in (5.16).

We consider G̃0. As in the proof of Theorem 5.1, we have ωj − jω = ([ω, j0], [ω, j∞]), and, by
Corollary B.3,

[ω, j#] =
θǫ
ctα

j′# + r, (5.34)

where j# stands for j0 or j∞, j′# is the derivative of j# as a function of bǫ
ctα , and r satisfies

‖r‖ . t−2α+κ. Since θǫ ≤ 1 and since κ < α, we deduce that [ω, j#] = O(t−α). By (C.2) of
Appendix C, we then obtain that

‖(N̂ + 1)−
1
2 G̃0(N + 1)−

1
2‖ . t−α.

Since H ∈ C1(N), we have ‖(N+1)
1
2 (H−z)−1(N+1)−

1
2‖ . |Im z|−2, and likewise ‖(N̂+1)−

1
2 (Ĥ−

z)−1(N̂ + 1)
1
2 ‖ . |Im z|−2. Moreover, by Assumption (1.20), ‖(N + 1)

1
2 e−iHt(N + 1)−

1
2‖ . 1, and

‖(N̂ + 1)−
1
2 eiĤt(N̂ + 1)

1
2 ‖ . 1. The previous estimates imply

‖(N̂ + 1)−
1
2 eiĤt(Ĥ − z)−1G̃0(H − z)−1ψt‖ . t−α|Imz|−4‖ψ0‖N . (5.35)

As in (5.30)–(5.31), we have in addition

‖(N̂ + 1)−
1
2G1E∆(H)‖ . t−(µ+ 3

2
)α,

and hence

‖(N̂ + 1)−
1
2 eiĤt(Ĥ − z)−1G1(H − z)−1ψt‖ . t−(µ+ 3

2
)α|Imz|−3‖ψ0‖. (5.36)

From (5.33), (5.35), (5.36) and the properties of the almost analytic extension f̃ , we conclude
that (5.32) holds. �

5.3. Scattering map. We define the space Hfin := Hp ⊗ Ffin ⊗ Ffin, where Ffin ≡ Ffin(h) is the
subspace of F consisting of vectors Ψ = (ψn)

∞
n=0 ∈ F such that ψn = 0, for all but finitely many

n, and the (scattering) map I : Hfin → H as the extension by linearity of the map (see [30, 14, 17])

I : Φ⊗
n∏

1

a∗(hi)Ω →
n∏

1

a∗(hi)Φ, (5.37)

for any Φ ∈ Hp⊗Ffin and for any h1, . . . hn ∈ h. (Another useful representation of I is I : Φ⊗ f →(
p+ q
p

)1/2

Φ ⊗s f , for any Φ ∈ Hp ⊗ (⊗p
sh) and f ∈ ⊗q

sh). As already clear from (5.37), the

operator I is unbounded. Let

h0 := {h ∈ L2(R3),

∫
dk(1 + ω−1)|h(k)|2 <∞}. (5.38)

Properties of the operator I used below are recorded in the following
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Lemma 5.3 ([14, 17, 24]). For any operator j : h→ j0h⊕ j∞h and n ∈ N, the following relations
hold

Γ̌(j)∗ = IΓ(j∗0)⊗ Γ(j∗∞), (5.39)

D((H + i)−n/2)⊗ (⊗n
s h0) ⊂ D(I). (5.40)

Proof. Since the operators involved act only on the photonic degrees of freedom, we ignore the
particle one. For g, h ∈ h, we define embeddings i0g := (g, 0) ∈ h⊕ h and i∞h := (0, h) ∈ h⊕ h. By
the definition of U (see (5.2)), we have the relations U∗a∗(g) ⊗ 1 = a∗(i0g)U∗, and U∗1⊗ a∗(h) =
a∗(i∞h)U∗. Hence, using in addition U∗Ω⊗ Ω = Ω, we obtain

U∗
m∏

1

a∗(gi)Ω⊗
n∏

1

a∗(hi)Ω =

m∏

1

a∗(i0gi)
n∏

1

a∗(i∞hi)Ω.

By the definition of Γ(j) and the relations j∗i0g = j∗0g and j∗i∞h = j∗∞h, this gives

Γ(j)∗U∗
m∏

1

a∗(gi)Ω⊗
n∏

1

a∗(hi)Ω =

n∏

1

a∗(j∗∞gi)
m∏

1

a∗(j∗0hi)Ω. (5.41)

Now, by the definition of Γ̌(j) (see (5.2)), we have Γ̌(j)∗ = Γ(j)∗U∗. On the other hand by (5.37),
the r.h.s. is IΓ(j∗0)⊗ Γ(j∗∞)

∏m
1 a

∗(gi)Ω⊗∏n
1 a

∗(hi)Ω. This proves (5.39).
To prove (5.40), we use the following elementary properties ([17, 24]):

The operator Hn
f (H + i)−n is bounded ∀n ∈ N, (5.42)

and, for any h1, · · · hn ∈ h0, where h0 is defined in (5.38),

‖a∗(h1) · · · a∗(hn)(Hf + 1)−n/2‖ ≤ Cn‖h1‖ω · · · ‖hn‖ω, (5.43)

where ‖h‖ω :=
∫
dk(1 + ω−1)|h(k)|2. The previous two estimates and the representation (5.37)

imply that for any Φ ∈ D((H + i)−n/2) and h1, · · · , hn ∈ h0, we have ‖IΦ ⊗ ∏n
1 a

∗(hi)Ω‖ ≤
Cn‖h1‖ω · · · ‖hn‖ω‖(H + i)n/2Φ‖ <∞. This gives the second statement of the lemma. �

5.4. Asymptotic completeness. Recall that Pgs denotes the orthogonal projection onto the
ground state subspace of H. Below, the symbol C(ǫ′)ot(1) stands for a positive function of ǫ
and t such that ‖C(ǫ)ot(1)‖ → 0 as t→ ∞ and we denote by χΩ(λ) a smoothed out characteristic
function of a set Ω. In this section we prove the following result.

Theorem 5.4. Assume the conditions of Theorem 1.3 and let a < Σ, ∆ = [Egs, a] ⊂ R. Then, for
every ǫ′ > 0 there is φ0ǫ′, s.t.

lim sup
t→∞

‖ψt − I(e−iEgstPgs ⊗ e−iHf tχ[0,a−Egs](Hf ))φ0ǫ′‖ = O(ǫ′), (5.44)

which implies (1.7).

Proof. Let α, β, κ be fixed such that the conditions of Theorems 3.1, 4.1 and 5.1 hold, with α = β.
Let (j0, j∞) := (χbǫ≤ctα , χbǫ≥ctα) be the partition of unity defined in Subsection 5.1. Since j20+j

2
∞ =

1, the operator Γ̌(j) is, as mentioned above, an isometry. Using the relation Γ(j)∗Γ(j) = 1, the
boundedness of Γ̌(j)∗, and the existence of W+, we obtain

ψt = Γ̌(j)∗e−iĤteiĤtΓ̌(j)e−iHtψ0 = Γ̌(j)∗e−iĤtφ0 + ot(1), (5.45)

where φ0 := W+ψ0. Next, using the property W+χ∆(H) = χ∆(Ĥ)W+, which gives W+ψ0 =

χ∆(Ĥ)W+ψ0, and χ∆(Ĥ) = (χ[Egs,a](H)⊗ χ[0,a−Egs](Hf ))χ∆(Ĥ), and again using χ∆(Ĥ)W+ψ0 =
W+ψ0 = φ0, we obtain

φ0 = (χ[Egs,a](H)⊗ χ[0,a−Egs](Hf ))φ0. (5.46)
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For all ǫ′ > 0, there is δ′ = δ′(ǫ′) > 0, such that

‖(χ[Egs,a](H)⊗ 1)φ0 − (χ∆ǫ′
(H)⊗ 1)φ0 − (Pgs ⊗ 1)φ0‖ ≤ ǫ′, (5.47)

with ∆ǫ′ = [Egs + δ′, a]. The last two relations give

φ0 = ((χ∆ǫ′
(H) + Pgs)⊗ χ[0,a−Egs](Hf ))φ0 +O(ǫ′). (5.48)

Now, let φ0,ǫ′ ∈ Ffin(D(dΓ(〈y〉))) ⊗ Ffin(h0) be such that ‖φ0 − φ0ǫ′‖ ≤ ǫ′. (We require that
the ‘first components’ of φ0ǫ′ are in D(dΓ(〈y〉)) in order to apply the minimal velocity estimate
below, and that the ‘second components’ are in Ffin(h0) in order that (Pgs ⊗ 1)φ0ǫ′ is in D(I)).
This together with (5.45) and (5.48) gives

ψt = Γ̌(j)∗e−iĤt((χ∆ǫ′
(H) + Pgs)⊗ χ[0,a−Egs](Hf ))φ0ǫ′ +O(ǫ′) + ot(1). (5.49)

Furthermore, let (j̃0, j̃∞) be of the form j̃0 = χ̃bǫ≤ctα , j̃∞ = χ̃bǫ≥ctα where χ̃, has the same

properties as χ, and satisfy j0j̃0 = j0, j∞j̃∞ = j∞. Then, by (5.39), the adjoint Γ̌(j)∗ to the
operator Γ̌(j) can be represented as

Γ̌(j)∗ = Γ̌(j)∗
(
Γ(j̃0)⊗ Γ(j̃∞)

)
. (5.50)

Using this equation in (5.49), together with the relations e−iĤt = e−iHt ⊗ e−iHf t and e−iHtPgs =
e−iEgstPgs, gives

ψt = Γ̌(j)∗ψtǫ′ +A+B + C +O(ǫ′) + ot(1), (5.51)

where

ψtǫ′ := (e−iEgstPgs ⊗ e−iHf tχ[0,a−Egs](Hf ))φ0ǫ′ , (5.52)

A := Γ̌(j)∗(Γ(j̃0)e
−iHtχ∆ǫ′

(H)⊗ Γ(j̃∞)e−iHf tχ[0,a−Egs](Hf ))φ0ǫ′ , (5.53)

B := Γ̌(j)∗((Γ(j̃0)− 1)e−iEgstPgs ⊗ Γ(j̃∞)e−iHf tχ[0,a−Egs](Hf ))φ0ǫ′ , (5.54)

C := Γ̌(j)∗(e−iEgstPgs ⊗ (Γ(j̃∞)− 1)e−iHf tχ[0,a−Egs](Hf ))φ0ǫ′ , (5.55)

Since Γ(j)∗ is bounded, the minimal velocity estimate, (4.1), gives (here we use that the first
components of φ0ǫ′ are in D(dΓ(〈y〉)))

‖A‖ ≤
∥∥(Γ(j̃0)e−iHtχ∆ǫ′

(H)⊗ 1)φ0ǫ′
∥∥ = C(ǫ′)ot(1).

Now we consider the term given by B. We begin with
∥∥B‖ ≤

∥∥(Γ(j̃0)− 1)Pgs

∥∥. (5.56)

Since 0 ≤ j̃0 ≤ 1, we have that 0 ≤ 1−Γ(j̃0) ≤ 1. Using this, the relations 1−Γ(j̃0) ≤ dΓ(χ̃bǫ≥ctα)
and dΓ(χ̃bǫ≥ctα) ≤ t−2αdΓ(b2ǫ), we obtain the bound

∥∥(Γ(j̃0)− 1)u‖2 ≤ ‖(1 − Γ(j̃0))
1
2u‖2 ≤ ‖dΓ( ¯̃χbǫ≥ctα)

1
2u‖2

≤ t−2α‖dΓ(b2ǫ )
1
2u‖2. (5.57)

Using the pull-through formula, one verifies that dΓ(b2ǫ)
1
2Pgs is bounded and that ‖dΓ(b2ǫ )

1
2Pgs‖ =

O(tκ) (see Appendix C, Lemma C.4). Hence, since κ < α, the above estimates yield
∥∥B

∥∥ = ot(1). (5.58)

Next, using Γ(j∞)e−iHf t = e−iHf tΓ(eiωtj∞e−iωt) and eiωtbǫe−iωt = bǫ + θǫt, it is not difficult to
verify (see Appendix C, Lemma C.3) that

∥∥C
∥∥ ≤

∥∥1⊗ (Γ(eiωtj̃∞e
−iωt)− 1)φ0ǫ′

∥∥ → 0,
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as t→ ∞, and hence we obtain
∥∥C

∥∥ = C(ǫ′)ot(1). (5.59)

Inserting the previous estimates into (5.51) shows that

ψt = Γ̌(j)∗ψtǫ′ +O(ǫ′) + C(ǫ′)ot(1). (5.60)

Next, we want to pass from Γ̌(j)∗ to I using the formula (5.39). To this end we use estimates
of the type (5.58) and (5.59) in order to remove the term Γ(j0) ⊗ Γ(j∞). Hence, we need to
bound I, for instance by introducing a cutoff in N . Let χm := χN≤m and χ̄m := 1 − χm and

write Γ̌(j)∗ψtǫ′ = χmΓ̌(j)
∗ψtǫ′ + χ̄mΓ̌(j)

∗ψtǫ′ . Using that N1/2Γ̌(j)∗ = Γ̌(j)∗N̂1/2, and that ψtǫ′ ∈
D(N̂1/2) (see Appendix C, Lemma C.4), we estimate

‖χ̄mΓ̌(j)∗ψtǫ′‖ . m− 1
2‖N̂1/2ψtǫ′‖ = m− 1

2C(ǫ′).

Now, we can use (5.39) to obtain

ψt = χmI
(
Γ(j0)⊗ Γ(j∞)

)
ψtǫ′ +O(ǫ′) + C(ǫ′)ot(1) + C(ǫ′)om(1). (5.61)

Using ‖χmI‖ ≤ 2m/2 together with estimates of the type (5.58) and (5.59), we find (here we need
the cutoff χm)

ψt = χmIψtǫ′ +O(ǫ′) + C(ǫ′,m)ot(1) + C(ǫ′)om(1). (5.62)

Since φ0ǫ′ ∈ H ⊗ Ffin(h0), we can write ψtǫ′ as ψtǫ′ = Φgs ⊗ ftǫ′ , with ftǫ′ ∈ Ffin(h0), and therefore
ψtǫ′ ∈ D(I) (here we need that fǫ′ is in Ffin(h0)). Hence χmIψtǫ′ = Iψtǫ′ +C(ǫ′)om(1). Combining
this with (5.62) and remembering (5.52), we obtain

ψt = I(e−iEgstPgs ⊗ e−iHf tχ[0,a−Egs](Hf ))φ0ǫ′ +O(ǫ′) + C(ǫ′,m)ot(1) + C(ǫ′)om(1). (5.63)

Letting t → ∞, next m→ ∞, the equation (5.44) follows. �

Remark. The reason for ǫ′ in the statement of the theorem is we do not know whether Ran(Pgs ⊗
1)W+ψ0 ∈ D(I). Indeed, if the latter were true, then the relations (5.63), (5.48) and ‖φ0−φ0ǫ′‖ ≤ ǫ′,
where φ0 :=W+ψ0, would give

ψt = I(e−iEgstPgs ⊗ e−iHf tχ[0,a−Egs](Hf ))φ0 +O(ǫ′) + C(ǫ′,m)ot(1) +C(ǫ′)om(1), (5.64)

which, after letting t→ ∞, next m→ ∞ and then ǫ′ → 0, gives

lim
t→∞

‖ψt − I(e−iEgstPgs ⊗ e−iHf tχ[0,a−Egs](Hf ))W+ψ0‖ = 0. (5.65)

6. Proof of minimal velocity estimates

In this section we use Theorems 3.1 and 4.1 to prove the minimal velocity estimates of Theorems
1.1 and 1.2.

Proof of Theorem 1.1. To prove (1.17), we use several iterations of Proposition 2.4. We consider
the one-parameter family of one-photon operators

φt := t−aν(0)χw≥1,

with w :=
( |y|
c′tβ

)2
, a > 1, and ν(δ) ≥ 0, the same as in (1.14). We use the expansion (3.6). We

compute

dw =
2b

(c′tβ)2
− 2βw

t
, (6.1)
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where, recall, b := 1
2 (∇ω · y + h.c.). We use the notation χ̃β ≡ χw≥1. We write b = bǫ + ǫ12(

1
ωǫ
∇ω ·

y + h.c.), where, recall, ωǫ := ω + ǫ, ǫ := t−κ. We choose κ > 0 satisfying

4β − 3 > κ > 2− 2β + ν(−1)− ν(0). (6.2)

Using the notation v := bǫ
ctβ

and the partition of unity χv≥1 + χv≤1 = 1, we find bǫ ≥ ctβ + (bǫ −
ctβ)χv≤1. Commutator estimates of the type considered in Appendix B (see Lemma B.5) give

χv≤−1(χ̃
′
β)

1/2 = O(t−β+κ) for c̃ > c/2, which, together with bǫ(χ̃
′
β)

1/2 = O(tβ), yields

(χ̃′
β)

1/2bǫχv≤1(χ̃
′
β)

1/2 ≥ −c̃tβ(χ̃′
β)

1/2χv≤1(χ̃
′
β)

1/2 − Ctκχ̃′
β.

The last two estimates, together with v ≤ 1 on supp χ̃′
v≥1, give dφt ≥ pt − p̃t + rem, where

pt :=
2

taν(0)

( c

(c′)2tβ
− β

t

)
χ̃′
β,

p̃t :=
2(c̃+ c)

c′2tβ+aν(0)
(χ̃′
β)

1/2χv≤1(χ̃
′
β)

1/2,

and rem =
∑4

i=1 remi, with rem1 given by (3.6) with χβ replaced by χ̃β,

rem2 :=
c

(c′tβ)2tκ+aν(0)
(
1

ωǫ
∇ω · y + h.c.)χ̃′

β,

rem3 = O(t−2β+κ−aν(0)), and rem4 := −aν(0)t−1φt. If β = 1, then we choose c > (c′)2 so that
pt ≥ 0.

As in the proof of Theorem 3.1, we deduce that the remainders remi, i = 1, 2, 3, 4, satisfy the
estimates (3.13), i = 1, 2, 3, 4, with ρ1 = ρ2 = −1, ρ3 = ρ4 = 0, λ1 = 2β+aν(0), λ2 = 2β+κ+aν(0),
λ3 = 2β − κ+ aν(0) and λ4 = 1+ aν(0). In particular, the estimate for i = 1 follows from Lemma

B.4. Since 2β > 1 + ν(−1) − aν(0) and 2β − κ > 1, the remainder rem =
∑4

i=1 remi gives an
integrable term. (Note rem2 = 0, if ν(0) = 0.)

Now, we estimate the contribution of p̃t. Let γ = 2β − 1 ≤ β and decompose p̃t = pt1 + pt2,
where

pt1 :=
const

tβ+aν(0)
(χ̃′
β)

1/2χc1tγ≤bǫ≤ctβ(χ̃
′
β)

1/2,

pt2 :=
const

tβ+aν(0)
(χ̃′
β)

1/2χbǫ≤c1tγ (χ̃
′
β)

1/2,

with c1 < 1, if γ = 1, and c1 < β(c′)2 if γ < 1, and const = c′+c
c′ . First, we estimate the

contribution of pt1. Since [(χ̃′
β)

1/2, (χc1tγ≤bǫ≤ctβ )
1/2] = O(t−β+κ) (see Lemma B.1 of Appendix B)

and since 2β − κ > 1, it suffices to estimate the contribution of const
tβ

χc1tγ≤bǫ≤ctβ . To this end, we
use the propagation observable

φt1 := t−aν(0)hβχγ , (6.3)

where hβ ≡ h( bǫ
ctβ

), h(λ) :=
∫∞
λ dsχs≤1, and χγ ≡ χ bǫ

c1t
γ ≥1. As in (3.9), we have

1

ctγ
hβ∂tbǫχ

′
γ ≤ const

t1+γ−κ
,

1

ctβ
h′β∂tbǫχγ ≥ − const

t1+β−κ
. (6.4)

Using this together with (3.7), we compute

dφt1 ≤ (
θǫ

ctβ+aν(0
− βbǫ

ctβ+1+aν(0)
)h′βχγ + hβχ

′
γ(

θǫ

c1tγ+aν(0)
− γbǫ

c1tγ+1+aν(0)
) +

3∑

i=1

rem′
i,

where rem′
1 is a sum of two terms of the form of rem1 given in (3.6), with χβ replaced by hβ , in

one, and by χγ , in the other, rem′
2 := O(t−1−γ+κ−aν(0)), and rem′

3 := −aν(0)t−1φt1. We estimate
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θǫ − βbǫ
t ≥ 1 − 1

ωǫtκ
− βc

t1−β on supph′β and θǫ − γbǫ
t ≤ 1 − 1

ωǫtκ
− γc1

2t1−γ on suppχ′
γ . Using h′β ≤ 0,

χ′
γ ≥ 0, hβ ≤ 1− bǫ

ctβ
and bǫ

ctβ
= O(t−β+γ) on suppχ′

γ , this gives

dφt1 ≤ −p′t1 + p̃t1 + rem′,

with rem′ :=
∑4

i=1 rem
′
i, rem

′
4 := ω−1/2O(t−β−κ−aν(0))ω−1/2, and

p′t1 := t−aν(0)(1− β

t
)h′βχγ , p̃t1 :=

1

ctγ+aν(0)
χ′
γ .

By (3.3), the term p̃t1 gives an integrable contribution. We deduce as above that the remainders
rem′

i, i = 1, 2, 3, 4, satisfy the estimates (3.13), i = 1, 2, 3, 4, with ρ1 = ρ2 = ρ3 = 0, ρ4 = −1,
λ1 = 2γ − κ + aν(0), λ2 = 1 + γ − κ + aν(0), λ3 = 1 + aν(0), and λ4 = β + κ + aν(0). Since
2γ − κ > 1, γ > κ, and β + κ > 1 + ν(−1) − aν(0), the remainder rem′ =

∑
i rem

′
i is integrable.

Finally, (2.4) with λ′ < aν(0)+(32 +µ)γ holds by Lemma B.6 of Appendix B. Hence, φt1 is a strong
one-photon propagation observable and therefore we have the estimate

∫ ∞

1
dt‖dΓ(pt1)1/2ψt‖2 .

∫ ∞

1
dt‖dΓ(p′t1)1/2ψt‖2 . ‖ψ0‖2−1. (6.5)

(In fact, by multiplying the observable (6.3) by tδ for an appropriate δ > 0, we can obtain a stronger
estimate.)

Now, we consider pt2. Let fβ ≡ f(w), where f(λ) := χλ≥1 and, recall, w =
( |y|
c′tβ

)2
, and

hγ ≡ h(vγ), with h(λ) :=
∫∞
λ dsχs≤1 and vγ := bǫ

c1tγ
. We use the propagation observable

φt2 := t−aν(0)(fβhγ + hγfβ). (6.6)

Using (3.7), (3.8), (6.1), b = bǫ + ǫ12(
1
ωκ

∇ω · y + h.c.), bǫ ≤ c1t
γ on suppχvγ≤1, γ = 2β − 1 and

[(f ′β)
1/2, hγ ] = O(t−γ+κ) (see Lemma B.1 of Appendix B), we compute

dφt2 ≤t−aν(0)
(
(
c1

(c′)2
− β)

2

t
(f ′β)

1/2hγ(f
′
β)

1/2 + fβh
′
γ(dvγ) + (dvγ)h

′
γfβ

)
+

4∑

i=1

rem′′
i ,

where dvγ = θǫ
c1tγ

− γbǫ
c1tγ+1 , rem

′′
1 is a term of the form of rem1 given in (3.6), with χβ replaced

by fβ, likewise, rem′′
2 is a term of the form of rem1 given in (3.6), with χβ replaced by hγ ,

and rem′′
3 = O(t−1−γ+κ−aν(0)) and rem′′

4 := −aν(0)t−1φt2. To estimate dvγ = θǫ
c1tγ

− γbǫ
c1tγ+1 ,

we use that f ′β ≥ 0, h′γ ≤ 0, θǫ = 1 − t−κω−1
ǫ , vγh

′
γ ≤ h′γ , and fβh

′
γ(dvγ) + (dvγ)h

′
γfβ =

−f1/2β (−h′γ)1/2(dvγ)(−h′γ)1/2f
1/2
β +O(t−γ+κ) (see again Lemma B.1 of Appendix B), to obtain

dφt2 ≤ −p′t2 + rem′′,

with rem′′ :=
∑6

i=1 rem
′′
i , rem

′′
5 = O(t−2γ+κ−aν(0)), rem′′

6 = ω−1/2O(t−γ−κ−aν(0))ω−1/2 and (at least
for t sufficiently large)

p′t2 := t−aν(0)
[
− (

2c1
(c′)2

− 2β)
1

t
(f ′β)

1/2hγ(f
′
β)

1/2 + (1− γc1
t1−γ

)
1

c1tγ
f
1/2
β h′γf

1/2
β

]
.

Since c1
(c′)2 < β and either γ < 1 or γ = 1 and c1 < 1, and f ′β ≥ 0 and h′γ ≤ 0, both terms in the

square braces on the r.h.s. are non-positive. We deduce as above that the remainders rem′′
i , i =

1, . . . , 6, satisfy the estimates (3.13), i = 1, . . . , 6, with ρ1 = ρ6 = −1, ρ2 = ρ3 = ρ4 = ρ5 = 0,
λ1 = 2β+aν(0), λ2 = λ5 = 2γ−κ+aν(δ), λ3 = 1+γ−κ+aν(0), λ4 = 1+aν(0), λ6 = γ+κ+aν(0).
Since 2β > γ + κ > 1 + ν(−1) − aν(0), 2γ − κ > 1 and γ > κ, the condition (2.3) is satisfied.
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Moreover, (2.4) with λ′ < aν(0) + (32 + µ)β holds by [9, Lemma 3.1]. Therefore φt2 is a strong
one-photon propagation observable and we have the estimate∫ ∞

1
dt‖dΓ(pt2)1/2ψt‖2 .

∫ ∞

1
dt‖dΓ(p′t2)1/2ψt‖2 . ‖ψ0‖2−1. (6.7)

(In fact, by multiplying the observable (6.6) by tδ for an appropriate δ > 0, we can obtain a stronger
estimate.)

Since p̃t = pt1 + pt2, estimates (6.5) and (6.7) imply the estimate
∫ ∞

1
dt‖dΓ(pt)1/2ψt‖2 . ‖ψ0‖2−1, (6.8)

which due to χ̃′
β ≈ χv=1, implies the estimate (1.17). �

Proof of Theorem 1.2. To prove (1.19), we begin with the following estimate, proven in the local-
ization lemma B.5 of Appendix B:

χbǫ≥c′tαχ|y|≤ctα = O(t−(α−κ)), (6.9)

for ǫ = t−κ, κ < α, and c < c′/2. Now, let χ2
bǫ≤c′tα + χ2

bǫ≥c′tα = 1 and write

χ2
|y|≤ctα = χbǫ≤c′tαχ

2
|y|≤ctαχbǫ≤c′tα +R ≤ χ2

bǫ≤c′tα +R, (6.10)

whereR := χbǫ≤c′tαχ
2
|y|≤ctαχbǫ≥c′tα+χbǫ≥c′tαχ

2
|y|≤ctαχbǫ≤c′tα+χbǫ≥c′tαχ

2
|y|≤ctαχbǫ≥c′tα . The estimates

(6.9) and (6.10) give

χ2
|y|≤ctα ≤ χ2

bǫ≤c′tα +O(t−(α−κ)), (6.11)

which in turn implies

‖Γ(χ|y|≤ctα)
1/2ψ‖ . ‖Γ(χbǫ≤c′tα)1/2ψ‖+ Ct−(α−κ)/2‖(N + 1)1/2ψ‖. (6.12)

This, together with (4.1), yields (1.19). �

Appendix A. Photon # and low momentum estimate

Recall the notation 〈A〉ψ := 〈ψ,Aψ〉. The idea of the proof of the following estimate follows [24]
and [9].

Proposition A.1. Assume (1.10) with µ > −1/2. Let ψ0 ∈ D(dΓ(ωρ)1/2). Then for any ρ ∈
[−1, 1],

〈dΓ(ωρ)〉ψt . tν(ρ)‖ψ0‖2H + 〈dΓ(ωρ)〉ψ0 , ν(ρ) =
1− ρ

2 + µ
. (A.1)

Proof. Decompose dΓ(ωρ) = K1 +K2, where

K1 := dΓ(ωρχtαω≤1) and K2 := dΓ(ωρχtαω≥1).

Then, by (1.15),

〈K2〉ψ ≤ 〈dΓ(tα(1−ρ)ωχtαω≥1)〉ψt ≤ tα(1−ρ)〈Hf 〉ψt . tα(1−ρ)‖ψ0‖2H . (A.2)

On the other hand, we have by (2.10),

DK1 = dΓ(αω1−ρtα−1χ′
tαω≤1)− I(iωρχtαω≤1g). (A.3)

Since ‖g(k)‖Hp . |k|µξ(k) (see (1.10)), we obtain
∫
ω2ρχtαω≤1‖g(k)‖2Hp

(ω−1 + 1)d3k . t−2(1+µ+ρ)α. (A.4)
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This together with (2.11) and (1.15) gives

|〈I(iωρχtαω≤1g)〉ψt | . t−(1+µ+ρ)α‖ψ0‖2H . (A.5)

Hence, by (A.3), since ∂t〈K1〉ψt = 〈DK1〉ψt , χ
′
tαω≤1 ≤ 0, we obtain

∂t〈K1〉ψt . t−(1+µ+ρ)α‖ψ0‖2H
and therefore

〈K1〉ψt ≤ Ctν
′‖ψ0‖2H + 〈dΓ(ω−ρ)〉ψ0 , (A.6)

where ν ′ = 1 − (1 + µ + ρ)α, if (1 + µ + ρ)α < 1 and ν ′ = 0, if (1 + µ + ρ)α > 1. Estimates (A.6)
and (A.2) with α = 1

2+µ , if ρ < 1, give (A.1). The case ρ = 1 follows from (1.15). �

Corollary A.2. Assume (1.10) with µ > −1/2, let ψ0 ∈ D(dΓ(ω−ρ)1/2), and denote Kρ :=
dΓ(ω−ρ). Then for any γ ≥ 0 and any c > 0,

‖χKρ≥ctγψt‖ . t
− γ

2
+ 1+ρ

2(2+µ) ‖ψ0‖2H + t−
γ
2 〈Kρ〉ψ0 . (A.7)

Proof. We have

‖χKρ≥ctγψt‖ ≤ c−
γ
2 t−

γ
2 ‖χKρ≥ctγK

1
2
ρ ψt‖ ≤ c−

γ
2 t−

γ
2 ‖K

1
2
ρ ψt‖

Now applying (A.1) we arrive at (A.7). �

Remark. A minor modification of the proof above give the following bound for ρ < 0 and
ν1(ρ) :=

−ρ
3
2
+µ

,

〈dΓ(ωρ)〉ψt . tν1(ρ)
(
‖ψt‖2N + ‖ψ0‖2H

)
+ 〈dΓ(ωρ)〉ψ0 . (A.8)

Appendix B. Commutator estimates

In this appendix, we estimate some localization terms and commutators appearing in Section 3.
Recall that bǫ :=

1
2 (θǫ∇ω ·y+ h.c.), where θǫ =

ω
ωǫ
, ωǫ := ω+ ǫ, ǫ = t−κ, with κ ≥ 0. The following

lemma is a straightforward consequence of the Helffer-Sjöstrand formula. We do not detail the
proof.

Lemma B.1. Let h, h̃ be smooth function satisfying the estimates
∣∣∂ns h(s)

∣∣ ≤ Cn〈s〉−n for n ≥ 0

and likewise for h̃. Let wα = |y|/(c1tα), vβ = bǫ/(c2t
β), with 0 < α, β ≤ 1. The following estimates

hold

[h(wα), ω] = O(t−α), [h̃(vβ), ω] = O(t−β), [h(wα), bǫ] = O(tκ),

[h(wα), h̃(vβ)] = O(t−β+κ), bǫ[h(wα), h̃(vβ)] = O(tκ).

Now we prove the following abstract result.

Lemma B.2. Let h be a smooth function satisfying the estimates
∣∣∂ns h(s)

∣∣ ≤ Cn〈s〉−n for n ≥ 0.

Assume that the commutators [v, ω] and [v, [v, ω]] are bounded, and for some z in C \R, (v − z)−1

preserves D(ω). Then the operator r := [h(v), ω] − [v, ω]h′(v) is bounded as

‖r‖ .
∥∥[v, [v, ω]]‖. (B.1)

Proof. We would like to use the Helffer–Sjöstrand formula for h. Since h might not decay at
infinity, we cannot directly express h(v) by this formula. Therefore, we approximate h(v) as follows.

Consider ϕ ∈ C∞
0 (R; [0, 1]) equal to 1 near 0 and ϕR(·) = ϕ(·/R) for R > 0. Let h̃ be an almost

analytic extensions of h such that h̃|R = h,

supp h̃ ⊂
{
z ∈ C; | Im z| ≤ C〈Re z〉

}
, (B.2)
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|h̃(z)| ≤ C and, for all n ∈ N,
∣∣∣∂z̄h̃(z)

∣∣∣ ≤ Cn〈Re z〉ρ−1−n| Im z|n. (B.3)

Similarly let ϕ̃ ∈ C∞
0 (C) be an almost analytic extension of ϕ satisfying these estimates. As a

quadratic form on D(ω), we have
[
h(v), ω

]
= s-lim

R→∞

[
(ϕRh)(v), ω

]
. (B.4)

Since (v − z)−1 preserves D(ω) for some z in the resolvent set of v (and hence for any such z, see
[1, Lemma 6.2.1]), we can compute, using the Helffer–Sjöstrand representation for (ϕRh)(v),

[
(ϕRh)(v), ω

]
=

1

π

∫
∂z̄(ϕ̃Rh̃)(z)

[
(v − z)−1, ω

]
dRe z dIm z

= − 1

π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1[v, ω](v − z)−1 dRe z dIm z

= [v, ω](ϕRh)
′(v) + rR, (B.5)

as a quadratic form on D(ω), where

rR = − 1

π

∫
∂z̄(ϕ̃Rh̃)(z)

[
(v − z)−1, [v, ω]

]
(v − z)−1 dRe z dIm z

=
1

π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1[v, [v, ω]](v − z)−2 dRe z dIm z. (B.6)

Now, using (v − z)−1 = O
(
| Im z|−1

)
, we obtain that

∥∥(v − z)−1[v, [v, ω]](v − z)−2
∥∥ . | Im z|−3

∥∥[v, [v, ω]]
∥∥. (B.7)

Besides, for all n ∈ N,

|∂z̄(ϕ̃Rh̃)(z)| ≤ Cn〈Re z〉ρ−1−n| Im z|n, (B.8)

where Cn > 0 is independent of R ≥ 1. Using (B.6) together with (B.7), we see that there exists
C > 0 such that ‖rR‖ ≤ C

∥∥[v, [v, ω]]‖, for all R ≥ 1. Finally, since (ϕRh)
′(v) converges strongly to

h′(v), the lemma follows from (B.5) and the previous estimate. �

We want apply the lemma above to the time-dependent self-adjoint operator v := bǫ
ctβ

.

Corollary B.3. Let h be a smooth function satisfying the estimates
∣∣∂ns h(s)

∣∣ ≤ Cn〈s〉−n for n ≥ 0

and let v := bǫ
ctβ

, where c > 0, ǫ = t−κ, with 0 ≤ κ ≤ β ≤ 1. Then the operator r := dh(v)−(dv)h′(v)
is bounded as

‖r‖ . t−λ, λ := 2β − κ. (B.9)

Proof. Observe that

dh(v) − (dv)h′(v) = [h(v), iω] − [v, iω]h′(v) + ∂th(v) − (∂tv)h
′(v).

It is not difficult to verify that (v − z)−1 preserves D(ω) for any z ∈ C \ R. Hence it follows from
the computations

[v, iω] = t−βθǫ, [v, [v, iω]] = t−2βθǫω
−2
ǫ ǫ, (B.10)

that we can apply Lemma B.2. The estimate

[v, [v, ω]] = O(ω−1
ǫ t−2β) = O

(
t−2β+κ

)
(B.11)

then gives

‖[h(v), iω] − [v, iω]h′(v)‖ . t−2β+κ.
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It remains to estimate ‖∂th(v)−(∂tv)h
′(v)‖. It is not difficult to verify that D(bǫ) is independent of

t. Using the notations of the proof of Lemma B.2 and the fact that ∂th(v) = s-limR→∞ ∂t(ϕRh)(v),
we compute

∂t(ϕRh)(v) =
1

π

∫
∂z̄(ϕ̃Rh̃)(z)∂t(v − z)−1 dRe z dIm z

= − 1

π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1(∂tv)(v − z)−1 dRe z dIm z

= (∂tv)(ϕRh)
′(v) + r′R,

where

r′R = − 1

π

∫
∂z̄(ϕ̃Rh̃)(z)

[
(v − z)−1, ∂tv

]
(v − z)−1 dRe z dIm z

=
1

π

∫
∂z̄(ϕ̃Rh̃)(z)(v − z)−1[v, ∂tv](v − z)−2 dRe z dIm z. (B.12)

Now using ∂tv = − βbǫ
ctβ+1 + 1

ctβ
∂tbǫ together with (3.8), we estimate

[v, ∂tv] = O(t−1−2β+κ)bǫ +O(t−1−2β+2κ).

From this, the properties of ϕ̃, h̃, and κ ≤ β, we deduce that ‖r′R‖ . t−1−β+κ . t−2β+κ uniformly
in R ≥ 1. This concludes the proof of the corollary. �

The following lemma is taken from [9]. Its proof is similar to the proof of Lemma B.2

Lemma B.4. Let h be a smooth function satisfying the estimates
∣∣∂ns h(s)

∣∣ ≤ Cn〈s〉−n for n ≥ 0

and 0 ≤ δ ≤ 1. Let w = y2/(ctα)2 with 0 < α ≤ 1. We have

[
h(w), iω

]
=

1

ctα
h′(w)

( y

ctα
· ∇ω +∇ω · y

ctα
)
+ rem,

with ∥∥ω δ
2 remω

δ
2

∥∥ . t−α(1+δ).

Now we prove a localization lemma.

Lemma B.5. Let κ < α. We have, for c < c′/2,

χbǫ≥c′tαχ|y|≤ctα = O(t−(α−κ)). (B.13)

Proof. Observe that by the definition of χ (see Introduction) and the condition c < c′/2, we
have χ|y|≥c′tαχ|y|≤ctα = 0. Let c < c̄ < c′/2 and let χ̃|y|≤c̄t be such that χ|y|≤ctχ̃|y|≤c̄t = χ|y|≤ct
and χ|y|≥c′tχ̃|y|≤c̄t = 0. Define b̄ǫ := χ̃|y|≤c̄tαbǫχ̃|y|≤c̄tα . It follows from the expression of bǫ that

|〈u, bǫu〉| ≤ ‖u‖‖|y|u‖, and hence we deduce that |〈u, b̄ǫu〉| ≤ c̄tα‖u‖2. This gives χb̄ǫ≥c′tα = 0.
Using this, we write

χbǫ≥c′tαχ|y|≤ctα = (χbǫ≥c′tα − χb̄ǫ≥c′tα)χ|y|≤ctα . (B.14)

Let a := bǫ
c′tα and ā := b̄ǫ

c′tα . Denote g(a) := χbǫ≥c′tα and g(ā) := χb̄ǫ≥c′tα . We will use the
construction and notations of the proof of Lemma B.2. Using the Helffer-Sjöstrand formula for
(ϕRg)(c), we write

(ϕRg)(a) − (ϕRg)(ā) =
1

π

∫
∂z̄(ϕ̃Rg)(z)

[
(a− z)−1 − (ā− z)−1

]
dRe z dIm z

= − 1

π

∫
∂z̄(ϕ̃Rg̃)(z)(a− z)−1(a− ā)(ā− z)−1 dRe z dIm z. (B.15)
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Now we show that (a− ā)(ā− z)−1χ|y|≤ctα = O(t−(α−κ)| Im z|−2). We have

a− ā = (1− χ̃|y|≤c̄tα)
bǫ
c′tα

+ χ̃|y|≤c̄tα
bǫ
c′tα

(1− χ̃|y|≤c̄tα),

and we observe that, by Lemma B.1,

[(1− χ̃|y|≤c̄tα), bǫ] = O(tκ). (B.16)

Thus

a− ā = (1 + χ̃|y|≤c̄tα)
bǫ
c′tα

(1− χ̃|y|≤c̄tα) +O(t−(α−κ)),

Moreover, we can write

(1− χ̃|y|≤c̄tα)(ā− z)−1χ|y|≤ctα =
[
(1− χ̃|y|≤c̄tα), (ā− z)−1

]
χ|y|≤ctα

= −(ā− z)−1
[
(1− χ̃|y|≤c̄tα),

bǫ
ctα

]
(ā− z)−1χ|y|≤ctα

= O(t−(α−κ)| Im z|−2),

where we used (B.16) to obtain the last estimate. This implies the statement of the lemma. �

Remark. The estimate (B.13) can be improved to χbǫ≥c′tαχ|y|≤ctα = O(t−m(α−κ)), for any m > 0,

if we replace ωǫ := ω + ǫ in the definition of bǫ by the smooth function ωǫ :=
√
ω2 + ǫ2.

In conclusion of this appendix we reproduce a statement corresponding to [9, Lemma 3.1] with
bǫ instead of |y|. The proof is the same.

Lemma B.6. Assume Hypothesis (1.10) on the coupling function g is satisfied for some −1
2 ≤ µ ≤

1
2 . Then

∥∥ηχbǫ≥ctαg(k)
∥∥
L2(R3;Hp)

. t−τ , τ < (
3

2
+ µ)α.

Appendix C. Technicalities

In this appendix we prove technical statements used in the main text. Most of the results we
present here are close to known ones. We begin with the following standard result, which was used
implicitly at several places.

Lemma C.1. Let a, b be two self-adjoint operators on h with b ≥ 0, D(b) ⊂ D(a) and ‖aϕ‖ ≤ ‖bϕ‖
for all ϕ ∈ D(b). Then D(dΓ(b)) ⊂ D(dΓ(a)) and ‖dΓ(a)Φ‖ ≤ ‖dΓ(b)Φ‖ for all Φ ∈ D(dΓ(b)).

We recall that, given two operators a, c on h, the operator dΓ(a, c) was defined in (5.10), and
dΓ̌(a, c) := UdΓ(a, c).

Lemma C.2. Let j = (j0, j∞) and c = diag(c0, c∞), where j0, j∞, c0, c∞, c1, c2 are operators on h.
Furthermore, assume that j∗0j0 + j∗∞j∞ ≤ 1. Then we have the relations

|〈φ̂,dΓ̌(j, c)ψ〉| ≤ ‖dΓ(|c0|)
1
2 ⊗ 1φ̂‖‖dΓ(|c0|)

1
2ψ‖

+ ‖1⊗ dΓ(|c∞|) 1
2 φ̂‖‖dΓ(|c∞|) 1

2ψ‖, (C.1)

|〈u,dΓ(j, c1c2)v〉| ≤ ‖dΓ(c1c∗1)
1
2u‖‖dΓ(c∗2c2)

1
2 v‖. (C.2)
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Proof. Let φ̃ = U∗φ̂ and for an operator b on h define operators i0b := diag(b, 0) and i∞b :=

diag(0, b) on h⊕ h. Since U∗dΓ(|c0|)
1
2 ⊗ 1U = dΓ(i0|c0|)

1
2 and U∗1⊗ dΓ(|c∞|) 1

2U = dΓ(i∞|c∞|) 1
2 ,

the statement of the lemma is equivalent to

|〈φ̃,dΓ(j, c)ψ〉| ≤‖dΓ(i0|c0|)
1
2 φ̃‖‖dΓ(|c0|)

1
2ψ‖

+ ‖dΓ(i∞|c∞|) 1
2 φ̃‖‖dΓ(|c∞|) 1

2ψ‖. (C.3)

We decompose dΓ(j, c) = dΓ(j, i0c0) + dΓ(j, i∞c∞) and estimate each term separately. We have,
using that ‖j‖ ≤ 1,

|〈φ̃,dΓ(j, i0c0)ψ〉| ≤
n∑

l=1

|〈|i0c0|
1
2
l φ̃, |i0c0|

1
2
l ψ〉|,

where |i0c0|l := 1 ⊗ · · · ⊗ 1 ⊗ i0|c0| ⊗ 1 ⊗ · · · ⊗ 1, with the operator |i0c0| appearing in the lth

component of the tensor product. By the Cauchy-Schwarz inequality, we obtain

|〈φ̃,dΓ(j, i0c0)ψ〉| ≤
n∑

l=1

‖|i0c0|
1
2
l φ̃‖‖|i0c0|

1
2
l ψ‖ ≤

( n∑

l=1

‖|i0c0|
1
2
l φ̃‖2

) 1
2
( n∑

l=1

‖|i0c0|
1
2
l ψ‖2

) 1
2

= ‖dΓ(|i0c0|)
1
2 φ̃‖‖dΓ(|i0c0|)

1
2ψ‖.

Since ‖dΓ(|i0c0|)
1
2ψ‖F(h⊕h) = ‖dΓ(|c0|)

1
2ψ‖F(h), we obtain the first term in the r.h.s. of (C.3). The

second one is obtained exactly in the same way. (C.2) can be proven in a similar manner. �

In the following lemma, as in the main text, the operator j∞ on L2(R3) is of the form j∞ =
χbǫ≥ctα , where, recall, bǫ =

1
2(vǫ(k) · y + h.c.), where vǫ(k) := θǫ∇ω, θǫ = ω

ω+ǫ , and ǫ = t−κ, κ > 0.

Lemma C.3. Assume α+ κ > 1. Let u ∈ F . Then
∥∥(Γ(j∞)− 1)e−iHf tu

∥∥ → 0, as t→ ∞.

Proof. Assume that u ∈ D(dΓ(〈y〉)). Using unitarity of e−iHf t and the fact that e−iHf t = Γ(e−iωt),
we obtain

∥∥(Γ(j∞)− 1)e−iHf tu
∥∥ =

∥∥(Γ(eiωtj∞e−iωt)− 1)u
∥∥ ≤

∥∥dΓ(eiωtj̄∞e−iωt)u
∥∥, (C.4)

where j̄∞ = 1 − j∞. Using the identity eitωbǫe
−itω = bǫ + θǫt and the Helffer-Sjöstrand formula

show that

eitωχ
( bǫ
ctα

≤ 1
)
e−itω = χ

(bǫ + θǫt

ctα
≤ 1

)
.

Since α+κ > 1, we have χ bǫ+θǫt
ctα

≤1 = χ bǫ+t
ctα

≤1 +O(t−(α+κ−1)). Due to −2bǫ
t ≥ 1 on suppχ bǫ+t

ctα
≤1 for

t sufficiently large, we have

‖χ bǫ+t
ctα

≤1φ‖ ≤ ‖−2bǫ
t

χ bǫ+t
ctα

≤1φ‖ ≤ ‖2〈y〉
t
φ‖,

and therefore
∥∥∥dΓ

(
χ bǫ+θǫt

ctα
≤1

)
u
∥∥∥ ≤ 2

t

∥∥dΓ
(
〈y〉

)
u
∥∥.

Together with (C.4), this shows that
∥∥(Γ(j∞) − 1)e−iHf tu

∥∥ → 0, for u ∈ D
(
dΓ(〈y〉)

)
. Since

D
(
dΓ(〈y〉)

)
is dense in F , this concludes the proof. �

Lemma C.4. Assume (1.10) with µ > −1/2 and (1.11). Then Ran(Pgs) ⊂ D(N
1
2 )∩D(dΓ(b2ǫ)

1
2 ), in

other words, the operators N
1
2Pgs and dΓ(b2ǫ)

1
2Pgs are bounded. Moreover, we have ‖dΓ(b2ǫ )

1
2Pgs‖ =

O(tκ).
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Proof. Let Φgs ∈ Ran(Pgs). The statement of the lemma is equivalent to the properties that

k 7→ ‖a(k)Φgs‖, k 7→ ‖bǫa(k)Φgs‖ ∈ L2(R3), (C.5)

and that ‖bǫa(k)Φgs‖L2(R3) = O(tκ). The well-known pull-through formula gives

a(k)Φgs = −(H − Egs + |k|)−1g(k)Φgs.

Since ‖(H − Egs + |k|)−1‖ ≤ |k|−1 one easily deduces that ‖a(k)Φgs‖ ∈ L2(R3) for any µ > −1/2.

Likewise, using in addition that bǫ = ω−1
ǫ

i
2(k · ∇k +∇k · k)− iω/(2ω2

ǫ ), together with

‖[(k · ∇k +∇k · k), (H − Egs + |k|)−1]‖ . ‖|k|(H − Egs + |k|)−2‖ . |k|−1,

and (1.10)–(1.11), one easily deduces that ‖bǫa(k)Φgs‖L2(R3) = O(tκ) for any µ > −1/2. �

Supplement I. The wave operators

In this supplement we briefly review the definition and properties of the wave operator Ω+, and
establish its relation with W+ in Theorem I.2 below. Let Hb ≡ Hpp(H) ∩ 1(−∞,Σ)(H) be the
space spanned by the eigenfunctions of H with the eigenvalues in the interval (−∞,Σ). Define

h̃0 := {h ∈ L2(R3),
∫
|h|2(|k|−1 + |k|2)dk <∞}. The wave operator Ω+ on the space Hb⊗Ffin(h̃0),

is defined by the formula

Ω+ := s-lim
t→∞

eitHI(e−itH ⊗ e−itHf ). (I.1)

As in [14, 16, 17, 28], it is easy to show

Theorem I.1. Assume (1.10) with µ ≥ −1/2 and (1.11). The wave operator Ω+ exists on

Hb ⊗Ffin(h̃0) and extends to an isometric map, Ω+ : Has → H, on the space of asymptotic states,
Has := Hb ⊗F .

Proof. Let ht(k) := e−it|k|h(k). For h ∈ D(ω−1/2), s. t. ∂αh ∈ D(ω|α|−1/2), |α| ≤ 2, we define the
asymptotic creation and annihilation operators by (see [14, 16, 17, 24, 28])

a#±(h)Φ := lim
t→±∞

eitHa#(ht)e
−itHΦ,

for any Φ ∈ D(|H|1/2)⋂RanE(−∞,Σ)(H). Here a# stands for a or a∗. To show that a#±(h) exist

(see [16, 28]), we define a#t (h) := eitHa#(ht)e
−itH and compute a#t′ (h) − a#t (h) =

∫ t′
t ds∂sa

#
s (h)

and ∂sa
#
s (h) = ieiHtGe−iHt, where G := [H, a#(hs)]−a#(ωht) = 〈g, ht〉L2(dk) for a

# = a∗ and

−〈ht, g〉L2(dk) for a# = a. Thus the proof of existence reduces to showing that one-photon terms

of the form 〈ηg, ht〉 are integrable in t. By (1.10), we have ‖〈ηg, ht〉L2(dk)‖Hp . (1 + t)−1−ε, with

0 < ε < µ + 1, which is integrable. Moreover, as in [16, 28] one can show that a#±(h) satisfy the
canonical commutation relations and relations a±(h)Ψ = 0, and

lim
t→±∞

eitHa#(h1,t) · · · a#(hn,t)e−itHΦ = a#±(h1) · · · a#±(hn)Φ, (I.2)

for any Ψ ∈ Hb, h, h1, · · · , hn ∈ h̃0, and any Φ ∈ 1(−∞,Σ)(H). We define the wave operator Ω+ on
Hfin by

Ω+(Φ⊗ a∗(h1) · · · a∗(hn)Ω) := a∗+(h1) · · · a∗+(hn)Φ. (I.3)

Using the canonical commutation relations, one sees that Ω+ extends to an isometric map Ω+ :

H+
as → H. Using the relation eitĤ (Φ ⊗ a#(h1) · · · a#(hn)Ω) = (eitHΦgs)⊗ (a#(h1,t) · · · a#(hn,t)Ω),

the definition of I and (I.2), we identify the definition (I.3) with (I.1). �



ON QUANTUM HUYGENS PRINCIPLE AND RAYLEIGH SCATTERING 33

Recall that Pgs denotes the orthogonal projection onto the ground state subspace of H. Let
P̄gs := 1− Pgs and P̄Ω := 1− PΩ, where, recall, PΩ is the projection onto the vacuum sector in F .
Theorem 5.4 and its proof imply the following result.

Theorem I.2. Under the conditions of Theorem 5.4, we have on Ranχ∆(H)

Ω+(Pgs ⊗ P̄Ω)W+P̄gs + Pgs = 1. (I.4)

Proof. Let ψ0 ∈ Ranχ∆(H). For every ǫ′′ > 0 there is δ′′ = δ(ǫ′′) > 0, s.t.

‖ψ0 − ψ0ǫ′′ − Pgsψ0‖ ≤ ǫ′′, (I.5)

where ψ0ǫ′′ = χ∆ǫ′′
(H)ψ0, with ∆ǫ′ = [Egs + δ, a]. Proceeding as in the proof of Theorem 5.4 with

ψ0ǫ′′ instead of ψ0, we arrive at (see (5.63))

ψ0ǫ′′ = e−iHtI(e−iEgstPgs ⊗ e−iHf tχ(0,a−Egs](Hf ))φ0ǫ′ +O(ǫ′) + C(ǫ′,m)ot(1) + C(ǫ′)om(1), (I.6)

where we choose φ0ǫ′ such that φ0,ǫ′ ∈ D(dΓ(〈y〉))⊗Ffin(h̃0) and ‖W+ψ0ǫ′′ − φ0ǫ′‖ ≤ ǫ′. Now using
Theorem I.1, we let t→ ∞, next m→ ∞ to obtain

ψ0ǫ′′ = Ω+(Pgs ⊗ χ(0,a−Egs](Hf ))φ0ǫ′ +O(ǫ′). (I.7)

Since Ω+ is isometric, hence bounded, we can let ǫ′ → 0, which gives

ψ0ǫ′′ = Ω+(Pgs ⊗ χ(0,a−Egs](Hf ))W+ψ0ǫ′′ = Ω+(Pgs ⊗ P̄Ω)W+P̄gsψ0ǫ′′ . (I.8)

Here we used that χ(0,a−Egs](Hf ) = P̄Ωχ(0,a−Egs](Hf ), together with χ(0,a−Egs](Hf )W+ψ0ǫ′′ =

W+ψ0ǫ′′ and ψ0ǫ′′ = P̄gsψ0ǫ′′ . Introducing (I.8) into (I.5) and letting ǫ′′ → 0, we obtain

ψ0 = Ω+(Pgs ⊗ P̄Ω)W+P̄gsψ0 + Pgsψ0,

which gives (I.4). �

Supplement II. Creation and annihilation operators on Fock spaces

With each function f ∈ h, one associates creation and annihilation operators a(f) and a∗(f)
defined, for u ∈ ⊗n

sh, as

a∗(f) : u→
√
n+ 1f ⊗s u and a(f) : u→

√
n〈f, u〉h,

with 〈f, u〉h :=
∫
f(k)u(k, k1, . . . , kn−1) dk. They are unbounded, densely defined operators of Γ(h),

adjoint of each other (with respect to the natural scalar product in F) and satisfy the canonical
commutation relations (CCR):

[
a#(f), a#(g)

]
= 0,

[
a(f), a∗(g)

]
= 〈f, g〉,

where a# = a or a∗. Since a(f) is anti-linear and a∗(f) is linear in ϕ, we write formally

a(f) =

∫
f(k)a(k) dk, a∗(f) =

∫
f(k)a∗(k) dk,

where a(k) and a∗(k) obey (again formally) the canonical commutation relations
[
a#(k), a#(k′)

]
= 0,

[
a(k), a∗(k′)

]
= δ(k − k′),

Finally, given an operator b acting on the one-photon space, the operator dΓ(b) defined on the
Fock space F by (1.2) can be written (formally) as dΓ(b) :=

∫
a∗(k)ba(k) dk, where b acts on the

variable k.
The following bounds on a(f) and a∗(f) are standard (see e.g. [29]).
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Lemma II.1. Recall the notation ‖h‖ω :=
∫
dk(1 + ω−1)|h(k)|2. Let f ∈ h = L2(R3). The

operators a(f)(N + 1)−1/2 and a∗(f)(N + 1)−1/2 extend to bounded operators on H satisfying
∥∥a(f)(N + 1)−

1
2

∥∥ ≤ ‖f‖,
∥∥a∗(f)(N + 1)−

1
2

∥∥ ≤
√
2‖f‖.

If, in addition, f satisfy ω−1/2f ∈ L2(R3), then the operators a(f)(Hf + 1)−1/2 and a∗(f)(Hf +

1)−1/2 extend to bounded operators on H satisfying
∥∥a(f)(Hf + 1)−

1
2

∥∥ ≤
∥∥ω− 1

2 f
∥∥,

∥∥a∗(f)(Hf + 1)−
1
2

∥∥ ≤ ‖f‖ω.
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[30] M. Hübner and H. Spohn, Radiative decay: nonperturbative approaches, Rev. Math. Phys., 7, (1995), 363–387.
[31] W. Hunziker and I.M. Sigal, The quantum N-body problem, J. Math. Phys., 41, (2000), 3448–3510.
[32] W. Hunziker, I.M. Sigal and A. Soffer, Minimal escape velocities, Comm. Partial Differential Equations, 24,

(1999), 2279–2295.
[33] I.M. Sigal, Ground state and resonances in the standard model of the non-relativistic QED, J. Stat. Phys., 134,

(2009), 899–939.
[34] I.M. Sigal, Renormalization group and problem of radiation, in Quantum Theory from Small to Large Scales,

Lecture Notes of the Les Houches Summer Schools, volume 95. Oxford University Press, 2011; arXiv.
[35] I.M. Sigal and A. Soffer, The N-particle scattering problem: asymptotic completeness for short-range quantum

systems, Ann. of Math., 125, (1987), 35–108.
[36] I.M. Sigal and A. Soffer, Local decay and propagation estimates for time dependent and time independent hamil-

tonians, preprint, Princeton University (1988).
[37] I.M. Sigal and A. Soffer, A. Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials,

Invent. Math., 99, (1990), 115–143.
[38] E. Skibsted, Spectral analysis of N-body systems coupled to a bosonic field, Rev. Math. Phys., 10, (1998), 989–

1026.
[39] H. Spohn, Asymptotic completeness for Rayleigh scattering, J. Math. Phys., 38, (1997), 2281–2288.
[40] H. Spohn, Dynamics of Charged Particles and their Radiation Field, Cambridge University Press, Cambridge,

2004.
[41] D. Yafaev, Radiation conditions and scattering theory for N-particle Hamiltonians, Comm. Math. Phys., 154,

(1993), 523–554.
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