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ON QUANTUM HUYGENS PRINCIPLE AND RAYLEIGH SCATTERING

JEREMY FAUPIN AND ISRAEL MICHAEL SIGAL

ABSTRACT. We prove several minimal photon velocity estimates below the ionization threshold for
a particle system coupled to the quantized electromagnetic or phonon field. Using some of these
results, we prove the asymptotic completeness (for the Rayleigh scattering) on the states for which
the expectation of the photon number is uniformly bounded.

1. INTRODUCTION

In this paper we study the long-time dynamics of a non-relativistic particle system coupled to the
quantized electromagnetic or phonon field. For energies below the ionization threshold, we prove
several lower bounds on the growth of the distance of the escaping photons to the particle system.
(Here and in what follows we use the term photon for both photon and phonon.) Using some of
these results, we prove the asymptotic completeness (for the Rayleigh scattering) on the states for
which the expectation of the photon number is bounded uniformly in time.

Model. The state space for our model is given by H := H,, ® F and the dynamics is generated by
the Hamiltonian

H=H,+ Hy +1(9). (L1)

acting on it. Here #, is the particle state space, F is the bosonic Fock space, F = I'(h) := &F @7 h,
based on the one-photon space b := L?(R?), H,, is a self-adjoint particle system Hamiltonian, acting
on H,, and Hy := dI'(w) is the photon Hamiltonian, acting on F, where w = w(k) is the photon
dispersion law (k is the photon wave vector) and dI'(b) denotes the lifting of a one-photon operator
b to the photon Fock space,

AT (D)gnp = Y 1® - ®10b21Q--- D1 . (1.2)
Jj=1 j—1 n—j

Here ®7 stands for the symmetrized tensor product of n factors (for n = 0, b is replaced by C
and dI'(b);c = 0). The operator I(g) acts on H and represents an interaction energy, labeled by a
coupling family g(k) of operators acting on the particle space #,,.

For photons w(k) = |k|, for acoustic phonons, w(k) =< |k| for small |k| and ¢ < w(k) < ¢!,
for some ¢ > 0, away from 0, while for optical phonons, ¢ < w(k) < ¢!, for some ¢ > 0, for all
k. To fix ideas we consider below only the most difficult case of w(k) = |k|. (For photons, to
accommodate their polarizations, the one-boson space L?(R3) should be replaced by L?(R3;C?),
but the resulting modifications are trivial, see e.g. [29] [34].) In the simplest case of linear coupling
(the dipole approximation in QED or the phonon models), I(g) is given by

I(g) = /(9*(k‘) ® a(k) + g(k) © a*(k))dk, (1.3)

with a*(k) and a(k), the creation and annihilation operators, acting on F (see Supplement II for
definitions).

A primary model for the particle system to have in mind is an electron in a vacuum or in a solid
in an external potential V. In this case, H), := e(p)+V (z), p = —iV, with €(p) being the standard
non-relativistic kinetic energy, ¢(p) = |p|> = —A, (the Nelson model), or the electron dispersion
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law in a crystal lattice (a standard model in solid state physics), acting on H,, := L*(R?), and the
coupling family is given by

g(k) = [K[*€(k)e™™, (1.4)
where £(k) is the ultraviolet cut-off. For phonons, i = 1/2. To have a self-adjoint operator H,, we
assume that V' is a Kato potential. A key fact here is that there is a spectral point ¥ € o(H),
called the ionization threshold, s.t. below X, the particle system is well localized:

e f(H)| S 1, (1.5)

for any 0 < § < dist(supp f, %) and any f € CF((—o0,)), i.e. states decay exponentially in the
particle coordinates = ([26, [5, [6]). This can be easily upgraded to an N—body system (e.g. an
atom or a molecule, see e.g. [29 [34]). Another example — the spin-boson model — will be defined
below.

Finally, the above can be extended to the standard model of non-relativistic quantum electro-
dynamics in which particles are minimally coupled to the quantized electromagnetic field, which
leads to I(g) being quadratic in the creation and annihilation operators a™ (k).

Problem. In all above cases, the Hamiltonian H is self-adjoint and generates the dynamics through
the Schrodinger equation,
10y = Hapy. (1.6)

As initial conditions, 1y, we consider states below the ionization threshold, 3, defined in (LI2]),
i.e. 1 in the range of the spectral projection En(H), A := (—o0,X). In other words, we are
interested in processes, like emission and absorption of radiation, or scattering of photons on an
electron bound by an external potential (created e.g. by an infinitely heavy nucleus or impurity of
a crystal lattice), in which the particle system (say, an atom or a molecule) is not being ionized.

Denote by ®; and F; the eigenfunctions and the corresponding eigenvalues of the hamiltonian
H, below ¥, i.e. F; < X. The following are the key characteristics of evolution of a physical system,
in progressive order the refined information they provide and in our context:

e Local decay stating that some photons are bound to the particle system while others (if
any) escape to infinity, i.e. the probability that they occupy any bounded region of the
physical space tends to zero, as t — oo.

o Minimal photon velocity bound with speed c stating that, as ¢ — oo, with probability — 1,
the photons are either bound to the particle system or depart from it with the distance
> 't, for any ¢ < c.

Similarly, if the probability that at least one photon is at the distance > ¢’t, ¢’ > ¢, from
the particle system vanishes, as t — oo, we say that the evolution satisfies the mazimal
photon velocity bound with speed c.

o Asymptotic completeness on the interval (—oo, X)) stating that, for any 1y € Ran X(—qu)(H)?
and any € > 0, there are photon wave functions f;. € F, with a finite number of photons,
s.t. the solution, ¢ = e~ ®Hq)yq, of the Schrédinger equation, (IL6]), satisfies

limsup ||e ey — Z e Hitd; @ e HITE || <. (1.7)
t—o00 §

(It will be shown in the text that ®; ®, fje is well-defined, at least for the ground state
(j = 0).) In other words, for any ¢ > 0 and with the probability > 1 — ¢, the Schrodinger
evolution 1, approaches asymptotically a superposition of states in which the particle system
with a photon cloud bound to it is in one of its bound states ®;, with additional photons

(or possibly none) escaping to infinity with the velocity of light.
The reason for € > 0 in (L7) is that for the state ®; ®, f to be well defined, as one would expect,
one would have to have a very tight control on the number of photons in f, i.e. the number of
photons escaping the particle system. (See the remark at the end of Subsection [5.4] for a more
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technical explanation.) For massive bosons ¢ > 0 can be dropped (set to zero), as the number of
photons can be bound by the energy cut-off.

We describe the photon position by the operator y := iV, on L?(R3), canonically conjugate
to the photon momentum k (see [9] for a discussion of the notion of the photon position in our
context). We say that the system obeys the quantum Huygens principle if the Schrodinger evolution,
Wy = e )y, obeys the estimates

o0 12 1
/1 a1 AT (x 11 )32 < (ol (1.8)

ct®

for some norm |[|¢gl|o, some 0 < o/ < 1, and for any @ > 0 and ¢ > 0 such that either &« < 1 or
a =1 and ¢ < 1. In other words there are no photons which either diffuse or propagate with speed
< 1. Here xq denotes a smoothed out characteristic function of the set €2, which is defined at the
end of the introduction. The mazimal velocity estimate, as proven in [9], states that, for u > 0,
any ¢ > 1, and v < & min(<£=, ﬁ),

A (xyjer) 2] S #7710 (G9) + 14 (1.9)

Considerable progress has been made in understanding the asymptotic dynamics of non-relativis-
tic particle systems coupled to quantized electromagnetic or phonon field. The local decay property
was proven in [6] [7, 22] 23] 20} 211 [8, 10], by positive commutator techniques and the combination
of the renormalization group and positive commutator methods. The maximal velocity estimate
was proven in [9].

An important breakthrough was achieved recently in [I1], where the authors proved relaxation to
the ground state and uniform bounds on the number of emitted massless bosons in the spin-boson
model.

In scattering theory, asymptotic completeness was proven for (a small perturbation of) a solvable
model involving a harmonic oscillator (see [2, [39]), and for models involving massive boson fields
([14l 17, 18] 19]). Moreover, [24] obtained some important results for massless bosons. Motivated
by the many-body quantum scattering, [14] 24] [17, 18, 19] defined main notions of the scattering
theory on Fock spaces, such as wave operators, asymptotic completeness and propagation estimates.

Results. Now we formulate our results. For notational simplicity we consider ((ILT]), with the linear
coupling (L.3). The coupling operators g(k) are assumed to satisfy

110 g(k) 30, < [KIT1ER), ol <2, (1.10)

where £(k) is the ultra-violet cut-off (a smooth function decaying sufficiently rapidly at infinity) and
7 is an estimating operator on the particle space #, (a bounded, positive operator with unbounded
inverse), satisfying
ln~" f(H)I S 1, (1.11)

for any n = 1,2 and f € C§°((—o0,X)). For the particle model discussed in the paragraph
containing (I4)), (LI0) holds with = ()=, where (z) = (14]z|?)'/2, and the ionization threshold,
Y, for which (LII)) is true, is given by

Y= Rh_l)I;O SDleanR<g0, Hy), (1.12)
where the infimum is taken over D = {9 € D(H)| p(z) = 01if |z| < R, ||¢|| = 1} (see [26]; X is
close to inf oess(Hp)). For the spin-boson model defined below, n = 1.

Below, we assume g > —1/2 or g > 0. To apply our techniques to minimally coupled particle
systems, where 1 = —1/2, one would have to perform first the generalized Pauli-Fierz transform of
[33], as it is done in [9] (see also [29, [34]), which brings it to u = 1/2.

It is known (see [6, 27]) that the operator H has the unique ground state (denoted here as ®gy)
and that generically (e.g. under the Fermi Golden Rule condition) it has no eigenvalues in the
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interval (Egs,Y), where Egq is the ground state energy (see [7]). We assume that this is exactly
the case:
Fermi’s Golden Rule ([5, [6]) holds. (1.13)
Treatment of the (exceptional) situation when such eigenvalues do occur requires, within our ap-
proach, proving a delicate estimate | Pof(H)|| < (g), where Po denotes the projection onto H, ® (2
(Q:=1®06. .. is the vacuum in F) and f € C§°((Eys, X)\op(H)), uniformly in dist(supp f, o, (H)).
In what follows we let 1)y denote the Schrédinger evolution, vy = e 1)y, ie. the solution
of Schrodinger equation (L6]), with an initial condition g, satisfying vg = f(H)vp, with f €
G (=00, %))
For A > —C, we denote ||1olla == (||[voll® + ||(A + C’)%?/)o||2)1/2. We define v(p) > 0 by the
inequality
{r, T (w?)r) < 7P 4o, (1.14)
where [[¢]2 = [[¢[|F + ||1/)||?IF wry- 1t was shown in [9] (see (A.I) of Appendix@) that, for any

—1 < p <1, the inequality (EI:IZI) holds for the the exponent v(p) =
bound due to [24]). Also, the bound

2 + £ (this generalizes an earlier

[elley < Nlboll e (1.15)

shows that (LI4]) holds for p = 1 with v(1) = 0. With v(d) defined by (I.14)), we prove the following
two results.

Theorem 1.1 (Quantum Huygens principle). Assume (LIQ) with p > —1/2 and (ILII)). Let either
B8<1,orB=1andc<1. Assume

5 wv(=1)—v(0) 1 1
> e S e AR 1.16
b max<6+ 6 2+2(g+u)) (1.16)
Then for any initial condition vy € f(H)D(AT (w™)'/?), for some f € CF((—o0, X)), the Schridinger
evolution, i, satisfies, for any a > 1, the following estimate

> —B—av( 1
/1 dt =5 O a1y _ b2 < 1ol (117)

X Iyl
ctB

To formulate our next result we let I'(y) be the lifting of a one-photon operator x (e.g. a
smoothed out characteristic function of y) to the photon Fock space, defined by
L(x) = &nZo(®"X), (1.18)
(so that I'(eb) = ed'®), and then to the space of the total system. We have

Theorem 1.2 (Weak minimal photon escape velocity estimate). Assume (LIQ) with p > —1/2,
(LI1) and (LI3). Let the norm (g) = 3 4 <2 ||77|0“8"g||L2(R3,Hp) of the coupling function g be
sufficiently small and v(—1) < a < 1 —v(0). Then for any initial condition vy € f(H)D(d'((y))),
for some f € CF((Egs, X)), the Schridinger evolution, 1, satisfies the estimate

IT(X g <eree) el S 7 1%0llar )2 (1.19)

where v < $min(1 — a — v(0), 3(a — v(0) — v(-1))).

Remarks.

1) The estimate (LI7) is sharp if v(0) = 0. Assuming this and taklng v(=1) = (3/2 4+ p)~! (see
([A3)), the condition (IIB) on B in Theorem [T becomes 8 > 3 + HEIEEm) /2 57> and the condition on
a in Theorem L2, (3/24+p) ' <a < 1.

2) The estimate (.19 states that, as ¢ — oo, with probability — 1, either all photons are
attached to the particle system in the combined ground state, or at least one photon departs the
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particle system with the distance growing at least as O(t*). ((ILI9) for p > 1/2, some o > 0 and
o € Ea(H), with A C (Egs,e1 —O((g))) and e; the first excited eigenvalue of H,,, can be derived
directly from [8],[9].)

3) With some more work, one can remove Assumption (LI3) and relax the condition on vy in
Theorem [[.2] to the natural one: g € PsD(dI'((y))), where Py is the spectral projection onto the
orthogonal complement of the eigenfunctions of H with the eigenvalues in the interval (—oo, X).

Let N :=dI'(1) be the photon (or phonon) number operator. Our next result is

Theorem 1.3 (Asymptotic Completeness). Assume (LI0) with p > 0, (LII) and (LI3). Let the
norm (g) := ngz ”77‘a|8a9HL2(R3,Hp) of the coupling function g be sufficiently small. Suppose that

1 1
[N 2] S [IN 29| + |90l (1.20)

uniformly in t € [0,00), for any vy € D(N1/2). Then the asymptotic completeness holds on
RanE(_OQE)(H).

As we see from the results above, the uniform bound, (L20)), on the number of photons (or
phonons) emerges as the remaining stumbling block to proving the asymptotic completeness without
qualifications.

For massive bosons (e.g. optical phonons), the inequality (L20]) (as well as (I.14]), with v(0) = 0)
is easily proven and the proof below simplifies considerably as well. In this case, the result is
unconditional. It was first proven in [I4] for the models with confined particles, and in [17] for the
Rayleigh scattering.

The difficulty in proving this bound for massless particles is due to the same infrared problem
which pervades this field and which was successfully tackled in other central issues, such as the
theory of ground states and resonances (see [4, 34] for reviews), the local decay and the maximal
velocity bound. As was mentioned above, for the spin-boson model (see below), a uniform bound,
(g, 2N apy) < C(ahg) < 00, § > 0, on the number of photons, on a dense set of 1)y’s, was recently
proven in the remarkable paper [I1], which gives substance to our conjecture that the bound (L:20])
holds for a dense set of states.

Spin-boson model. Another example of the particle system, and the simplest one, is the spin-
boson model, describing an idealized two-level atom, with state space H, = C?, the hamiltonian
H, = e03, where o', 02,03 are the usual 2 x 2 Pauli matrices, and € > 0 is an atomic energy.
The coupling family is given by g(k) = w”k(k)o™, o = 1 (o1 Fi0?). In this case, g satisfies (LI0)
with n = 1. For the spin-boson model, we can take 3 = oo.

Approach and organization of the paper. In this paper, as in earlier works, we use the method
of propagation observables, originating in the many body scattering theory ([36] 37, [32] 25| [41], 12],
see [13L[31] for a textbook exposition and a more recent review), and extended to the non-relativistic
quantum electrodynamics in [14), 24} 16, 17, [18, 19] and to the P(¢)2 quantum field theory, in [15].
We formalize this method in the next section.

After that we prove key propagation estimates in Sections Bland [ Instead of |y|, these estimates
involve the operator b, defined as b. := 3(v(k) -y +y - v(k)), where v(k) := w’j_e, for e = t~", with
some k > 0. Since the vector field v(k) is Lipschitz continuous and therefore generates a global
flow, the operator b, is self-adjoint. We show in Section [0l that these propagation estimates give
the estimates (LI7) and (LI9). (The operator b. was considered in [I.LM. Sigal and A. Soffer,
Unpublished, 2004], as a regularization of the non-self-adjoint operator by used in [24]. We could
have also used the operators be, with 0 < € < 7 := dist(A, 0,(H,;)) constant, b := %(f cy+ f ),
or b:= %(kz -y +k-y). Using b, avoids some (trivial) technicalities, as compared to the other two
operators. At the expense of slightly lengthier computations but gaining simpler technicalities, one
can also modify be to make it bounded, by multiplying it with the cut-off function x|y|<¢, with ¢ > 1
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k
Vet

such that the maximal velocity estimate (I.9]) holds, or use the smooth vector field v(k) :=
instead of v(k) := &)

Theorem [L3 is UIJ)Jrrf)ven in Section Bl As it is standard in the scattering theory, to prove the
asymptotic completeness, we establish the existence of the Deift-Simon wave operator W, mapping
solutions of the Schriodinger equation into the scattering data (see [14} [17), 24] and [35, 25] [41], 12] for
earlier works). We prove the existence of W, in Subsection and then deduce from it Theorem
[L3lin Subsection 5.4l A low momentum bound of [9] and some standard technical statements are
given in Appendices [A] [Bl and [Cl

The paper is essentially self-contained. In order to make it more accessible to non-experts, we
included Supplement I giving standard definitions, proof of the existence and properties of the wave

operators, and Supplement II defining and discussing the creation and annihilation operators.

Notations. For functions A and B, we will use the notation A < B signifying that A < CB for
some absolute (numerical) constant 0 < C' < oo. The symbol Ea stands for the characteristic
function of a set A, while x.<; denotes a smoothed out characteristic function of the interval
(—00, 1], that is it is in C*°(R), is non-decreasing, and = 1 if x < 1/2 and = 0 if x > 1. Moreover,
X->1 := 1 — x.<1 and x.—1 stands for the derivative of x.>1. Given a self-adjoint operator a and a
real number a, we write x,<q 1= Xe<1, and likewise for x,>o. Finally, D(A) denotes the domain
of an operator A.

Acknowledgements. The first author is grateful to Jean-Francois Bony, Jiirg Frohlich and Chris-
tian Gérard for useful discussions. The last author is grateful to Volker Bach, Jean-Frangois Bony,
Jirg Frohlich, Marcel Griesemer and Avy Soffer for many discussions and collaboration. His re-
search was supported in part by NSERC under Grant No. NA7901.

2. METHOD OF PROPAGATION OBSERVABLES

Many steps of our proof use the method of propagation observables which we formalize in what
follows. In this section we consider the Hamiltonian (L) and assume (L.I0) and (LII). Let
Wy = e ). The method reduces propagation estimates for our system say of the form

/0 dGY 2l < o3, @)

for some norm |||l > |- ||, to differential inequalities for certain families ¢; of positive, one-photon
operators on the one-photon space L?(R3). Let

doy := 0Py + ilw, P,
and let v(p) > 0 be determined by the estimate (L.I4]). We isolate the following useful class of
families of positive, one-photon operators:
Definition 2.1. A family of positive operators ¢; on L?(R?) will be called a one-photon weak
propagation observable, if it has the following properties
e there are § > 0 and a family p; of non-negative operators, such that
lw™2¢,w 92 <tV and  dgy > py + Z rem, (2.2)
finite

where rem; are one-photon operators satisfying
|w™Pi/? remy; w2 <t (2.3)

for some p; and \;, s.t. \; > 1+ v(p;),
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e for some X > 1+ v(d) and with 7 satisfying (LIT]),
PR
([ InbuglB b 7. (2.4

(Here ¢, acts on g as a function of k.)

Similarly, a family of operators ¢; on L?(R3) will be called a one-photon strong propagation
observable, if

dpy < —py+ Y rem;, (2:5)
finite
with p; > 0, rem; are one-photon operators satisfying ([2.3]) for some \; > 1+ v(p;), and (2.4) holds
for some N > 14 v(d).

The following proposition reduces proving inequalities of the type of ([2.1I) to showing that ¢, is
a one-photon weak or strong propagation observable, i.e. to one-photon estimates of d¢; and ¢;g.

Proposition 2.2. If ¢; is a one-photon weak (resp. strong) propagation observable, then we have
either the weak estimate, (2.1I), or the strong propagation estimate,

(W, ®by) + /O |G, 12 < o3 + ol (2.6)

with the norm Hq/Jonéﬁ = |[voll3 + llwoll2, where ®; := dT(¢;) and Gy := dT(p;), on the subspace
fH)H CH, with | e Cg°((—o0, %)). Here |[yoll« := llvbolls and [[¢olle = 3= 4ol

Before proceeding to the proof we present some useful definitions. Consider families ®; of oper-
ators on H and introduce the Heisenberg derivative

D(I)t = 8t(I)t + Z[H, th] N
with the property

O (Y, @19hr) = (Y1, DPtfy). (2.7)

Definition 2.3. A family of operators ®; on a subspace H; C H will be called a (second quantized)
weak propagation observable, if for all ¢y € Hq, it has the following properties

o sup, (¥, D) < ol
e D®; > G+ Rem, where G; > 0 and [ dt {1y, Rem ¢)y) < H¢0H?>,

for some norms ||[¢oll«, || - [|¢ > || - ||. Similarly, a family of operators ®; will be called a strong
propagation observable, if it has the following properties

e &, is a family of non-negative operators;
e D®; < —G; + Rem, where G; > 0 and [ dt(yy, Rem ¢y) < [|eboll%,

for some norm || - |l > | - ||

If &, is a weak propagation observable, then integrating the corresponding differential inequality
sandwiched by 9¢’s and using the estimate on (1;, ®¢1/;) and on the remainder Rem, we obtain the
(weak propagation) estimate 2.1)), with ||vol|% = [[oll3 + [lvoll7. If ®; is a strong propagation
observable, then the same procedure leads to the (strong propagation) estimate

(e, Berpe) + /0 a2 2 < oll3 + kol (2.8)

Proof of Proposition Let ®; := dI'(¢¢). To prove the above statement we use the relations
DodI'(¢¢) = dI'(dg), ilI(g), dT(¢¢)] = —1(igrg), (2.9)

where Dy is the free Heisenberg derivative,
Dy®; .= &@t + i[Ho, (I)t],
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valid for any family of one-particle operators ¢¢, to compute
D®y = dT'(dey) — I(igrg). (2.10)

Denote (A)y := (¢, A). Applying the Cauchy-Schwarz inequality, we find the following version
of a standard estimate

((@)! < ( / Ingl1Z, = 3d%k) 146146l ar - (2.11)

Using that o = fi(H)¢t, with f1 € CP((—00,X)), fif = f, and using (TLII), we find ||n~ 1|
< |[¢p¢]]. Taking this into account, we see that the equations (2.110), (24) and (LI yield

(T (idrg)) | St po 3. (2.12)

Next, using (Z3), we find rem; < [Jw=P/?rem;wP/?|wPi < t~wPi. This gives dI'(rem;) <
t~2dTl(w*), which, due to the bound (ILI4)), leads to the estimate

(T (rems))y, S ¢ o 17, (2.13)
In the strong case, (2.5) and (2.I0) imply
Dd, < —dI'(py) Z dI'(rem;) — I(igrg), (2.14)
finite

which together with (2.12]) and (2.I3]) implies that ®; is a strong propagation observable.
In the weak case, ([2.2)) and (2.I0) imply

D®; > dl'(pe) + Z dI'(rem;) — I(igrg). (2.15)

finite

Next, since ¢y < |lw™92¢w™%2||wd < 70wl we have dT(¢) < 770 dI(w?). Using this estimate
and using again the bound ([I4]), we obtain

(W, epn) S 7V OAL W)y, S llol3- (2.16)
Hence &, is a weak propagation observable. O

Proposition 2.4. Let ¢; be a one-photon family satisfying
e cither, for some 6 > 0,

lw ™™ S 7 and  dey > py — ddy + rem, (2.17)
or ~
doy < —pt + doy + Z rem;, (2.18)
finite

where py > 0, rem; are one-photon operators satisfying (2.3), and <;~$t s a weak propagation
observable,

e [2.4) holds.
Then, depending on whether (2I7) or [2I8) is satisfied, ®; := dI'(¢¢) is a weak, or strong,
propagation observable, with the norm |[toll¢ = [|[Ybollp, on the subspace f(H)H C H, with f €
CP((—o0,X)), and therefore we have either the weak or strong propagation estimates, 21 or
23), on this subspace.

Proof Given Proposition 2.4l and its proof, the only term we have to control is dF(d(ﬁt) Using that
¢ is a weak propagation observable and using (7)), (ZI0) and (ZI2) for ®; := d['(¢;), we obtain

| / 01| < (o2 (2.19)
0

with ||¢0||3éﬁ = ||1/)0||%>+ 0% (|[1oll¢ and [|1o]|« might be different now), which leads to the desired
estimates. O
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Remarks.

1) Proposition reduces a proof of propagation estimates for the dynamics (L)) to estimates
involving the one-photon datum (w, g) (an ‘effective one-photon system’), parameterizing the hamil-
tonian (II)). (The remaining datum H,, does not enter our analysis explicitly, but through the
bound states of H, which lead to the localization in the particle variables, (L5])).

2) The condition on the remainder in ([2.2)) can be weakened to rem = rem’ 4+ rem”, with rem’
and rem” satisfying (2.3)) and

[rem”| < Xjy|>zts (2.20)
for ¢ as in (L9]), respectively. Moreover, (2.3)) can be further weakened to
o
/ |, AT (remi ) | < oo, (2.21)
0

3) An iterated form of Proposition [24] is used to prove Theorem [[11

3. THE FIRST PROPAGATION ESTIMATE

Let v(d) > 0 be the same as in (I.14)) and recall the operator b, defined in the introduction. We
write it as

1
be := 5(0€Vw ‘y+y-Vwh.), where 6. := wi’ wei=w+te e=t " (3.1)

€

Theorem 3.1. Assume (LI0) with p > —1/2 and (LII). Let v(—1) —v(0) < k < 1.
If either 6 <1, or =1 and c< 1, and

B> max((3/2 + 1), (14 K)/2,1 — 5+ v(—1) — v(0)), (3:2)
then for any initial condition 1y € f(H)D(dT(w™")Y2), for some f € C3°((—o0, X)), the Schrodinger
evolution, iy, satisfies, for any a > 1, the following estimates

/1 dt O dT (x e _ )3l < ol (3.3)

v(0) =0, u > 0, and B satisfies B2) and 5 <
X=X
(

be
ctB

ol

, with ¢ > 1, then, with the notation

&

y\)2§1;

Tt
[t D6 o, xS il (3.49)
1 ct

Proof. We will use the method of propagation observables outlined in Section 2 We consider the
one-parameter family of one-photon operators

—av b€
Oy =1 (O)szl, vi= gt (3.5)

where a > 1. To show that ¢; is a weak one-photon propagation observable, we obtain differential
inequalities for ¢;. We use the notation xg = x»>1. To compute d¢;, we use the expansion

2
dgy =t~ (dv)xj5 + Zremi, rem; := ¢~ %) [dxs — (dv)xj], remy := —av(0)t Ly (3.6)
i=1

Using the definitions in (3.1]), we compute

0.  pbe 1

do= 2o P |
VT @B T apt + cth

Byb. (3.7)
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Next, we have 0;be = 55 (w10 Vw -y + h.c.) on D(be), which, due to the relation 3 (w10 Vw-

y+ h.c.) =we 1/266w6 1/2 , becomes

dybe = tlTw—l/% w2, (3.8)
Using that (see Lemma [B.] of Appendix [B))
we 2wy = w b VP + O(t),
and that b, > 0 on supp X/B’ we obtain

const

tﬁat EXB = t1+5 pE (39)
The relations (3:8)-(33), together with 2 X5 < X}, imply
3
s e B
where rem; and remy are given in (3.6) and
remg = O(t~1-AFr—av(0)), (3.11)
This, together with . = 1 — = and w_ Xﬁ = We 1/2x’ﬁwe 1z, O(t=B**) (see again Lemma [B.1] of
Appendix [B]), implies
1 _ _
d¢t ( Xﬁ + Zreml, remy = W 1/2X/Bw 1/2 (312)

We have ||¢¢| <t~ and therefore, due to ([LI4)), the first estimate in (2.2)) holds. If either

B < 1 (and t sufficiently large), or § = 1 and ¢ < 1, then p; := (ctiﬁ — g) is non-negative, which

implies the second estimate in (2:2)). Thus (Z2]) holds. By the definition ([B.6) and Corollary [B.3]
of Appendix [Blfor i = 1, and by an explicit form for ¢ = 2,3, 4, we have the estimates

w2 rem; w™Pi/2|| < N, (3.13)

= 1,2,3,4, with p1 = po = p3 =0, py = =1, \y = 28 — k +av(0), A2 = 1 4+ av(0), A3 =
1+8—k+av(0), and \y = S+ Kk+av(0). We remark here that the i = 2 term is absent if v(0) = 0.

The relation ([B.I3]) together with the assumption x < 1 implies (2.3]) with p = p; and A = \;,
for rem = rem;, provided \; > 1+ v(p;).

Finally, (24) with X' < av(0) + (3 + )8, holds, by [9, Lemma 3.1], with b, instead of |y| (See
Lemma, in Appendix [Bl of the present paper.). Hence ¢; is a weak one-photon propagation
observable, provided 25 > 1+ k + v(0) — av(0), f — k > v(0) —av(0), B+ K > 1+ v(—1) — av(0),
and (% +p)B > 1. Therefore, by Proposition and under the conditions on the parameters above,

/1 dt =50 aT (¢ < (1ol (3.14)

This, due to the definition of X/ﬁ, implies the estimate ([3.3)).

We now prove ([B.4]). We use again the notation xg = xu>1, where v := Cli—%, and we denote

w = (%)2 We consider the one-parameter family of one-photon operators

bt == XXBX (3.15)
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and show that ¢; is a weak one-photon propagation observable. We have ||¢|| < 1 and therefore,
due to (ILI4)) and the assumption v(0) = 0, the first estimate in ([2.2]) holds. Now, we show the
second estimate in (2.2]). To compute d¢;, we use the expansion

déy = x(dv)xsx + X' (dw)xsx + Xxp(dw)x' + Y remy, (3.16)
i=1,2
where
rem; := x(dxg — (dv)xjs)x, remy:= (dx — (dw)x’)xsx + h.c.. (3.17)
As in B7)—-33), we have
/ 0 Bbe |,
X(dv)xpx 2 X(—5 = — 577 )Xgx + rems, (3.18)

where remg = O(t~178+%). We consider the term —Ct%bjl in (B.I8). Since b, = 061/212061/2, we obtain,
using in particular Lemma [B.1] of Appendix [Bl that
Xbexax = X(xX5)" /207001 (x5) X
= 012(x3) P xbx (x5) 201 + O(t"),

and the maximal velocity cut-off gives xby < ¢&t. Thus, commuting again y through 951/ ? and
(X’B)l/z, we obtain

pbe pe

/ C n1/2 1 p1/2
XA XX 2 —ct—BXQe/ X501 x + O(m)- (3.19)
Proceeding in the same way for the term 69;5 in (BI8) gives
Oc Bbe L—B¢ 12 10172
X(ct_ﬁ - ctﬁ+1)XﬁX > L X0 “xp0e’ " x + O(tw—_ﬁ)- (3.20)

Next, we compute dw = 2(# — (5%‘)2%), where, recall, b = (Vw -y +h.c.). By Lemma Bl of

Appendix [Bl, we have

X' (dw)xax + xxs(dw)x’ = =2(xs)" (=X )"/ (dw) (=x'x) 2 (xs) '/ + O(tlé_ﬁ)- (3.21)

Using that dw < (% — 1)% on the support of x’ and that x’ < 0 and ¢ > 1, we obtain

1.1
(=X (dw)(=x")"* = (1= 2)2(=xX'x)- (3.22)
The relations 3.16]), (3.18), (3:21) and B.22)) imply
dér > pr+ pr — Z rem;, (3.23)
i=1,2,3,4

where remy = O(tzﬁ%,i) and

_L=0BC im0
P = —— g0 XEX0 (3.24)
—— L1 12, 4 12
pri= (1= =)oxg (XX ™ (3.25)

The terms p; and p; are non-negative, provided 8 < 1/¢ and ¢ > 1. Together with the assumption
v(0), this implies ([2.2)). Next, we claim the estimates

[lrem; || < t_)‘, (3.26)
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i=1,2,3,4, with A\ = 28 — k. Indeed, the definition (3.I7) and Corollary [B.3] of Appendix [Blimply
B:20) for i = 1. The estimate for i = 3,4 are obvious. To estimate remg, we write

be -
(dx = (dw)x)xpx = (dx = (dw)x') Z5Xsx;
where xg = (Cl;% )" Yxs, and be = 0.b + iew 2. Using that, by Lemma [B.4 of Appendix [B]
[dx = (dw)x'| S 77,

and commuting b through xg gives

1 . 1
(dx = (dw)x)xpx = —5(dx = (dw)x)0cXsbx + O(775=)- (3.27)
By Lemma [B.4] we also have
[(dx = (dw)x)wl| < 7%
Combining this with (3.27) and the estimates w.! = O(t*) and by = O(t), we obtain

(dx ~ () Isx = Olorzms) (3.25)

and hence the estimate for ¢ = 2 follows.
The relation (3:26) implies (23) with A = 25 — &, for rem = rem;, provided 23 — k > 1. Finally,
as above, (2.4) holds with \ < av(0)+ (2 +4u)/3 by Lemmal[B.6lof Appendix[Bl This yields (34). O

4. THE SECOND PROPAGATION ESTIMATE
We introduce the norm (g) := 3,2 Hn‘a|8°‘gHL2(R37HP), for the coupling function g.

Theorem 4.1. Assume ([LIQ) with p > —1/2, (LII) and (LI3). Let (g) be sufficiently small,
v(-1) <k <1l,and 0 < o < 1. Let f € CP((Egs, X)) and ¢g € D := f(H)D(dI'({y))). Then the
Schrodinger evolution, vy, satisfies the estimate

IT (X, <erie ) 2 1 St0ollar )2 (4.1)
for 0 <6 < $min(k —v(-1),1—k,1 —a —v(0)) and any ¢ > 0.

We define B, := dI'(b.). As is [9, Proposition B.3 and Remark B.4], one verifies that D C
D(dT'({y))) € D(Be). The proof of Theorem [.1] is based on the following result (cf. [36] 32]).
Proposition 4.2. Under the conditions of Theorem [{.1], the evolution 1y = ety obeys

IXBe<ettl St [ollarq))e (4.2)
1

where ' == 3 min(iC(g> —1—-k,1—k,k—v(-1)).

Remark. The constant C' is independent of g := dist(Eg,supp f) (but the implicit constant
appearing in the right hand side of (4.2]) does depend on 7).

Proof. Let € > 0 be a constant. Let p < min(&c@> — 1,1) where C' > 0 is a positive constant

defined below. Consider the propagation observable

B
q)t = _tpSD <_> )
ct

where 90(%) = (% — )XBegct- Note that ¢ < 0, but ¢’ > 0. Let ¢/ = p?. The relations below

are understood in the sense of quadratic forms on D. The IMS formula gives

D®, = M+ R, (4.3)
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where M := —tPp1 D((ct) "1 B.)1 — pt =Py and

1

Ro= (B el + #(1H, 0] - 5 (¢ By + Big), (4.4)

where By := i[H, B]. First, we compute the main term, M, in ([43]). We leave out a standard
proof of f(H) € CY(B,) (see e.g. [20, Theorem 8]) and standard domain questions such as that

D C D(B.). We have
B, 1 1 B,
D<—> =—DB. — ——. (4.5)
ct ct tct

The computations below are understood in the sense of quadratic forms on D. Since DB, =
i[H¢, B] = N, where N, :=dI'(6.), we have

DB.= N, +1, (4.6)
where I :=i[I(g), Bc]. To estimate the operator N, from below, we use that §, = 1 — =, to obtain
N, > N — edl(w ). (4.7)

Next, we estimate the term ¢1dI’(w;1)¢;. Using

A )i = 2)71) = () (5 = ) G B (o — )7

we obtain that

(), (26— 27N 4 )7 S e,
and hence, since B, commutes with N, the Helffer-Sjostrand formula shows that

[T (we ), o) (N + 1) 7H S t7he ™.
Since, in addition, ||dI'(w: M )u| < ||dT(w™1)ul|, we deduce that
1D (we ) r (A0 (™) + 12 (N +1) 71 S 1,

and therefore, by interpolation and (LI4]), we arrive at

(prdl(w ) S TV oll2y + 7Oy 3. (4.8)

By the condition p > —1/2 and (ZII) (with § = 0), we have I > —C{g)(N +n"2+1). Combining

this with the definition of M, (LI1), (435), (£6), (£7) and (£8), we obtain

(M)y, <— Ct%m[(l — C{g))N —t7'Be = Clg)lpr + cpp)

c v(— —1+4+v -
o (e D o 2, + O ) (19)

Let Q:=1®06® ... be the vacuum in F and P, the orthogonal projection on the subspace
Hp @Q, PoU = (Q, V) r ® Q. We now use the following

Lemma 4.3. Assume (LIQ) with p > —1/2, (LII) and (II3). Let (g) be sufficiently small and
f e CF((Egs,X)). Then

1Poe™ f(H)ull < t™*I(B)ull, s<1/2, (4.10)

where B = dT'(b) with, recall, b= (k -y +y- k).
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Proof. We use the local decay properties established in [21] and [7]. Let ¢; := (e; + €j4+1)/2 and
0j :=ej+1 — ej. We decompose the support of f into different regions, writing

fOH) = f(H)Xrr<e + Y F(H)X;(H), (4.11)
finite
where x;(H) denotes a smoothed out characteristic function of the interval [¢; —9;/4, ¢j+1+0;41/4].
Using Po = Po(B), and [21], we obtain
[ Poe™ f(H)xm<coull = 1{B)~ e ™ f(H)xn<eoull S t°|[(B)ul, (4.12)
for s < 1/2.
To estimate ||Poe " f(H)x,;(H)ul, we let \;(H) := f(H)x;(H). In [7], assuming (LI3),
a conjugate operator Bj is constructed in such a way that the commutators [x;(H),B;] and
[[xj(H), Bj], Bj] are bounded. Moreover, the Mourre estimate
X (H)[H,iBj]X;(H) > mox;(H)?,
holds for some positive constant mg. By an abstract result of [32], this implies

[(B;) e X (H)(Bj) || < 7%,

for s < 1. Since the operator Bj is of the form Bj =B+ M;, where M; is a bounded operator, it
then follows that ‘ .
H< > s —thXj(H) B>—sH S,t_sy

and hence, using again that Po(B) = Py, we obtain

[Pae™ 35 (H)ull = [|(B) e ™ X(H)ull S t7°|[(B)ul. (4.13)

Equations (d.I1), (4.12]) and (4.I3]) give (4.10). O
Together with 1 Py = P, the estimate (£10]) gives

{prPawr)y, = (Pa)y, St 2 [(B)voll* < 210 %.- (4.14)

Combining this with N > 1 — Py and (4.9), we obtain

1 _
(M)y, <= —{p1[l =7 B = Clg)lr + epp)y,

+ = = (D o124 + 7O o |IF + ¢l e )- (4.15)
Now, using the definition go(c—;) = (% — )XBegct, we compute
B. B. B. , B
— —p) = — — =2 —p(— =2
P Tele)=— Ot (0 = 2)x) = p(— = 2)x
B B, B,
= ((L=p) +20x+ — (- =2 (4.16)

Next, using that £ XX o (Be -2}’ < (% —2)x/, we find furthermore

Be Be
— P o) < (L+p)x+ (- =2 =px+¢' < (1+p)¢" (4.17)
This, together with (@I5), with p? = ¢, gives
o 1 ,
<M>1lft < - [E —-1- IO] tl_p<‘p >1lft
¢ v(— —1+v - —2s
+ = (D o2y + O |15 + 7 10l 3n )2 (4.18)

tl-r
where 0 :=1— C(g).
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Next, we show that the remainder, R, in ([d3]) is bounded as
11 +772 4+ N)"V2RA+ 972+ N) V2| <721 (4.19)

Indeed, proceeding as in the proof of Lemma [B.2] using the Helffer-Sjostrand formula, one verifies
that

[@ 4772+ N)"V2R(1+ 772 + N)7H?
S+ 072+ N)TV2By(1+ 72+ N)TV2, (4.20)

where By := [Be, [B., H]]. Now, an elementary computation (see (Z3))) gives By = dI'(ef.w ?) +
I(b2g). Using efw 2 < e L and ||[I(nb2g)(1 + N)~V/2| < |nb2g|| < €' since p > —1/2, we obtain

[(1+724+ N)V2By(1 4972+ N)V2 <727 (4.21)
which together with (4.20]) implies ([4.19]). Together with Equations (£3) and (4.I8]) and the fact
that ||p=2f(H)|| < 1, this implies

g —
<Dq>t>1lft < - (Z —1-p)t 1+p<90/>¢t
+ O (et VTP |2y 4 72O o [§ 4+ T o 1,). (4.22)

Thus, choosing s such that 2s — p > 0, ([£22]), together with the observation ®; > t’xp <.,
the conditions £ —1—p > 0, p < 1 < 2 —p(0), the trivial inequalities [|¢)o|§ < Hz/JoHﬁp(@»,

szOHB2 < szOHdF( )2 and Hardy’s inequality H¢0H2_1 < Hz/JonlF“y» implies that

t

00w < APe)y = (Pa)y|t=0 + /(Dq)s%psds

0
< (=BexB.<o)yo + C(e7 1+ e £ 1) |90 | 3r ()2

Using (—BexB.<0)wo S Hz/JonlF“y», and choosing e = ¢~", we find

O < CEPT 0 170) o 3p )2
which in turn gives (£.2)). O
Proof of Theorem [.1 Since N := dI'(1) and B, := dI'(b¢), commute we have
L(Xb.<crte) < XB.<e'Nte = XB.<e'Nte (XN<ertr + XN2ertr)
< XBe<etr + XNt (4.23)
where v := a+ v and ¢ := ¢/¢”’. We choose ¢ < 1/¢/, so that 0 < ¢ < 1. Next, we have

¥

Xzl < (¢)72t73 ||XN2c”ﬂN§¢t||
< ()7 N,
which, together with (LI4)) (with p = 0), implies

W

7440
Ixnzeo el S22 [lvollo- (4.24)

The inequality (£23]) with v = 1, Proposition and the inequality ([£.24)) (with v = 1 — «) imply
the estimate ([@.1]). O
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5. PROOF OF THEOREM [L.3]

5.1. Partition of unity. We begin with a construction of a partition of unity which separates
photons close to the particle system from those departing it. Following [14] [I7] (cf. the many-body
scattering construction), it is defined by first constructing a partition of unity (jo, joo), 8 +7% = 1,
on the one-photon space, h = L?(R?), with jg localizing a photon to a region near the particle system
(the origin) and jo, near infinity, and then associating with it the map j : h — h @ b, given by
Jjih = joh®jooh. After that we lift the map j to the Fock space F :=T'(h) by using I'(j) : T'(h) —
I'(h @ bh) (defined in (LI8))). Next, we consider the adjoint map j* : ho © hoo — jiho + jichoo,
which we also lift to the Fock space F :=I'(h) by using I'(j*) : T(h & h) — I'(h). By definition, the
operator I'(j) has the following properties

PG =TG",  TOIG) =T3)- (5.1)

Since j*j = j2 + j2, = 1, this implies the relation I'(§)*I'(j) = 1, which is what we mean by a
partition of unity of the Fock space F :=T'(h).

We refine this construction further by defining the unitary map U : T'(h @ h) — I'(h) @ I'(h),
through the relations

UQ=0Q®Q, Ud'(h)=[a"(h)®@1+1®a" (h)]U, (5.2)
for any h = (hq,hy) € h @ b, and introducing the operators
L(j) == UT(j) : T(h) — T(h) @ T(h). (5-3)
We lift T'(j), as well as T'(j), from the Fock space F := T'() to the full state space H := H, ® F, so
that e.g. T'(5) : H — H ®@I(h). Now, the partition of unity relation on H becomes L)) =1
(in particular, I'(j) is an isometry).
Finally, we specify jo to be the operator xp. <cte, with b. defined in the introduction, and js

is defined by j& + j% = 1 and is of the form Xp >, where € := t7%, and «a and k satisfy
1—p/(64+3p) <a<landl+v(-1)—a<k<3(5a—3).

5.2. Deift-Simon wave operators. We define the auxiliary space H:=HQF , which will serve as
our repository of asymptotic dynamics, which is governed by the hamiltonian H := H®1+1® Hy
on H. With the partition of unity f( j), we associate the Deift-Simon wave operators,

Wy = %;hm W(t), where W(t):= eiﬁtf‘(j)e_th, (5.4)

which map the original dynamics, e "¢, into auxiliary one, e—iflt (to be further refined later). Our

goal is to prove

Theorem 5.1. Assume (LI0) with p > 0, (LII) and (L20). Then the Deift-Simon wave operators
exist on Ran E(_OQE)(H) and satisfy
W Py = Py, (5.5)

and, for any smooth, bounded function f,

W f(H) = f(H)W.. (5.6)

Proof. We want to show that the family W(t) := eifl t0(j)e "t form a strong Cauchy sequence as
t — oo. To this end, we define x., 1= X, and X, = Xg>,,» Where N := N®1+1® N, the

number operator on #, so that X, + Xm = 1. First, we show that, for any ¢y € D(N %),

sup [, W (2)ol| S ™% ol - (57)
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Indeed, by the assumption (L.20),

L iHtv o\ —iHs Al' —1Hs —1Hs
IN2e (e o | S IIN2T(G)e  *tol| + [D(i)e " 4] (5:8)
The boundedness of I'(j) implies ||T'(j)e~ 4| < |[¢bo]| < |[¢bo||n. Moreover, we claim that
I(j)N = NT(j), (5.9)

Indeed, a straightforward computation gives I'(j)d['(c) = dI'(¢)I'(j) + dI'(j, jc — ¢j), where ¢ =
diag(c, c) heh—=haehand

T(a, )|y = Za@ " RaRcRaAR - Da. (5.10)

Jj— 1 n—j
It follows from this relation and the equalities UdI'(¢) = (dI'(¢) ® 1 + 1 ® dI'(¢))U that ([14] [17])
[(j)dl(¢) = (dT'(c) ® 1 + 1 ®@ dT(e))T'(§) + dT'(j, je — ¢j), (5.11)

where and dI'(a, c) := UdI'(a,c). For ¢ = 1, the latter relation gives (5.9). Equation (5.3) implies
N %f‘( §) =T(¢H)N %, and this relation, boundedness of I'(j) and the assumption (L20) give

Sl _
IN3T()e oo || = TGN e 50| < Jldbollw,s

and therefore, by (G.8), ||N%ethf‘(j)e_iH8¢o\| < |[wol|v. Since this is true uniformly in ¢,s, it
implies || N2W (£)vo|| < ||[vol|n, which yields (57). Equation (57) implies that

P [, (W () = W (8) o]} £ ™= (5.12)

Now we show that, for any m > 0 and for any ¢ € D(N%) NRan E_ x)(H),

X (W (t) = W (£))b0]| = 0, (5.13)

as t,t’ — oco. This together with (5.12]) implies that W (¢) form a strong Cauchy sequence. Lemma
(.21 proven below, implies that, in order to show (5.13)), it suffices to prove

I f (H)(W (&) = W (2))bol| — 0, (5.14)

to which we now proceed. We write
tl
(W) = W (1)) = / dsd,W ()0 (5.15)
t

and compute O,W (t) = ethe_th, where G := i(HT'(j)—T'(j)H)+8:'(j). We write G = Gy+G1,
where

Go := i(HsL(j) — T(j)Hy) + O,1(j)
and

G1:=1i(I(9) ® 1)I'(§) —T'(5)1(9). (5.16)

We consider Go. Using (H, ® 1 ® 1)(1 @ I'(j)) = (1 ® T'(j))(H, ® 1) and using the notation
dj :=i(wj — jw) + 0¢j, with w = diag(w,w), and (G.1I1]), we compute readily

Go = UdF( dj) = dF( dj). (5.17)

Write j' = ( jo, ji.), where jo, jb are the derivatives of jo, joo as functions of v = cto" We first find

a convenient decomposition of dj. Using djf = (djof, djoof), With de; = iw, ¢;] + Orer, (B1) and
Corollary [B.3] we compute

0. ab,

i cta+1) + O(t20tm), (5.18)
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We insert the maximal velocity partition of unity X(lulya <y + X(lulypsy = 1, with ¢ > 1, into this
ct — ct -

7 j;éﬁ = O(l)j;#, valid due to the

ct®

formula and use the notation xy = X (ls)2<
ct —

localization of j’ > to obtain

dj = — 012X (jh, F)XBL? + rem, (5.19)
rem; = O(t~")x (g, o)X + O 227" + Ot~ )X(‘y‘)2>1 (5.20)

These relations give
Go = G, + Remy, (5.21)
where G, := CI%Udf‘(j, ¢), with ¢, = (cp, o) 1= (01/2xj0><01/2 0: 1/2 ngoxﬁglp), and
Rem; := G — G, = UdTI'(j, remy).

Next, we write A := sup g, | ftt/ ds(¢s, Gots)|, where ¢y = e‘msf(f{)xmqgo. By (CI) of

Appendix [C] G satisfies
N 1 1 - 1
(0 Go)| < —= (1AL (|eo])? @ 19]| AT (|eo])2 |

14 1
+ 11 @ dT(Jeco]) 2 | [[AT (Jeoo] ) Z90)- (5.22)
By the Cauchy-Schwarz inequality, (5.22]) implies

[ sttt < ([ asarqeon’ @ 16.12) ([ astar o b )

t t
#/ U 1
([ astodr(eaba )" ([ dslar(ech e )"
t t
Since |cgl, |coo| are of the form 0. / 2XXb et XHEI / 2, the minimal velocity estimate (3.4]) implies

/1 ds s~ 04 (e 2 s 1* < lhxmdold < mldoll?,
where af#(\c\)% stands for dF(!co\)% ®lorl® dF(!coo\)%, and
00 —a 1
[ sl e b 5 ol

with dF#(\c\)% = dF(!co\)% or dF(\coo])%. The last three relations give
t/
sup | ds{¢s, Gos)| — 0, ' — oo. (5.23)
goll=1 ¢
Likewise, applying (C.2)) of Appendix [C] first with ¢; = ¢2 = 1, next with ¢y = 1 and ¢ =

X(lsly21 and then applying (CIl) with ¢y = xjox and ¢ = XJjooX, We see that Rem; satisfies

(6, Remy)] < 39 (+72 45N Ew| 4+ ¢~ AT (i) ol + ¢ A0OE, 0, )E0l).  (5:24)

Now, using (5.24)) and the Cauchy-Schwarz inequality, we obtain

t t/ 1 t/ 1
\/ ds{ps, Remgihs)| < (/ dss™T|N %(ﬁ ”2)2{</ dss_2(2a_“)+THN%1/;S”2)2
¢ ¢

l 1
/ ds s~ A0 (il x) P2 ) / ds s~ 4T[0 O, ) 0?) T} (5.25)

ct
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Let 7 > 1 and o« = 2 — 7. Then by the estimate (3.3]),
> 2 ./ L 2 2
[ dss A 0 b P £ el
1
provided a < %, and by the maximal velocity estimate (L.9]),

—2a+T 3
[ dss AR L R S Bollarn

3 11, 2Jm) One verifies that ¢ > 1 can be

chosen such that the two conditions above are Satlsﬁed Moreover, by Assumption (L.20]),

provided that o > 1 — 27/3, where, recall, v < 4 min(Z

/ ds 57220~ N3 |12 < [loll v,
1

provided that 5ac > 3 + 2k. This and the fact that, by Assumption (L20]), the first integral on the
r.h.s. of (B.25]) converge yield

t/

sup | ds(Qgs,Rems¢s>| -0, tt — oo (5.26)
[ goll=1
Equations (5.23]) and (5:26]) imply
t 5
A= dsxm f(H)eSGos|| — 0, t,t' — . (5.27)
t

Now we turn to G;. We use the definition T'(j) := UT(j) to obtain T'(j)a” (k) = Ua® (jh)T'(j),
then (5.2), and then jijo + jiojoo = 1, to derive

L(5)a™ (k) = (¥ (joh) © 1+ 1@ a¥ (joh))L (), (5:28)
where a# stands for a or a*, which implies
L()1(9) = L(jog) ® 1 +1® I(joog))L(5)- (5.29)
The equation (5.29]) gives
G1=(I((1~Jo)g) ®1 —1® I(jocg))T(5)- (5.30)
Due to [9, Lemma 3.1] (see Appendix Bl Lemma B.6), we have ||joogllzz <t [|(1—=70)gll 2 <t
with A < (u + 3)a. This, (ZII)) (with § = 0), and N%f(]) = f(j)N% imply that
|GV +1)72)| S e, (5:31)

This together with Assumption (IL20) implies that || f ()G < t_(”+%)°‘H1/JoHO, and hence
% .
| [ assnem G »0. i -
t

provided that o > (u+ 3)~'. This together with (5.27) gives (5.14)), and therefore (EI3)), which,
as was mentioned above, together with (5.12]) shows that W (t) is a Cauchy sequence as t — co.
This implies the existence of W .

Finally, the proofs of (5.5) and (5.0]) are standard. We present the second one. By (5.4), we have

W:teiH — olim ethP( ) —iH (t+s) _ — ¢ lim ezH(t —s)F(j) —iHt __ GZHSW_H which 1mphes (m O

Now we establish the following lemma used in the proof of Theorem [B.11
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Lemma 5.2. Under th? conditions of Theorem [5.1, for any f € C{°(A), A C (Eg, %), and
o € Ran EA(H) N D(N2),
(N +1)72(CG) F(H) = FIEDTG))we]l < 42 lollo. (5.32)
Proof. We compute, using the Helffer-Sjostrand formula, T'(j) f(H)¢y — f(H)T(j)¢r = R, where
R:= % / d:f(2)(H — z) " (HT(j) = T(j)H)(H — 2) "4y dRe z dIm 2. (5.33)

We have HT'(j) — T(j)H = Gy — iGy, where Gy := UdD'(j,wj — jw) and Gy := (I(g) ® 1)I(j) —
I'(j)I(g) was defined in (5.18).

We consider Gy. As in the proof of Theorem 5.1, we have wj — jw = ([w, jo], [w, jso]), and, by
Corollary [B.3]

‘ 0 .
W, jy] = Ct—a]%a +7, (5.34)
where ju stands for jo or jo, j;# is the derivative of jux as a function of CI;;, and r satisfies

|r| < t72¢F*. Since . < 1 and since £ < a, we deduce that [w,jz] = O(t™%). By (C2) of
Appendix [C] we then obtain that

(N +1)"2Go(N +1)73) St

Since H € C1(N), we have H(N—i—l)%(H—z)_l(N—Fl)_% | < |Im 2|72, and likewise H(N—Fl)_%(ﬁ—
2) YN + 1)%H < |Im 2|~2. Moreover, by Assumption (L20), ||(N + 1)%e_th(N + 1)_%\\ <1, and
(N + 1)_%eth(]\7 + 1)% || < 1. The previous estimates imply
~ 1 -7 N ~

IV + 1) 72 (H — 2) 7 Go(H — 2) ™ hel| S 7 [Imz| ™[ tho|v. (5.35)

As in (5.30)-(E31), we have in addition
IV + 172G Ea(H)]| S 102,

and hence

(N + 1) 2T H — 2)7 Gy (H — 2) | S ¢ 022 Imz| 3|y |- (5.36)

From (5.33), (537), (536) and the properties of the almost analytic extension f, we conclude
that (5.32) holds. O

5.3. Scattering map. We define the space Hgy, := Hp ® Fin @ Fpin, Where Fgp = Fin(h) is the
subspace of F consisting of vectors ¥ = (¢,,)02, € F such that ¢, = 0, for all but finitely many
n, and the (scattering) map I : Hgy — H as the extension by linearity of the map (see [30, [14, [17])

I:o® ﬁa*(hi)Q — ﬁa*(hi)q), (5.37)
1 1

for any ® € H, ® Fg, and for any hy,...h, € h. (Another useful representation of [ is I : d® f —

1/2
( p—;q > P @ f, for any ® € H, ® (®h) and f € @Ih). As already clear from (5.37), the

operator I is unbounded. Let
ho :={h € L2(]R3),/d/<:(1 +w H|h(k)]? < oo} (5.38)

Properties of the operator I used below are recorded in the following
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Lemma 5.3 ([14], 17, 24]). For any operator j : h — joh ® jooh and n € N, the following relations
hold

L(j)* = IT(5) @ T(i%), (5.39)
D((H +i)™™?) @ (&"ho) C D(I). (5.40)

Proof. Since the operators involved act only on the photonic degrees of freedom, we ignore the
particle one. For g, h € h, we define embeddings ipg := (¢,0) € h@ b and ich := (0,h) € hDh. By
the definition of U (see (5.2])), we have the relations U*a*(g) ® 1 = a*(igg)U*, and U*1 ® a*(h) =
a*(isoh)U*. Hence, using in addition U*Q ® Q2 = €2, we obtain

U ﬁ a*(9:)Q ® ﬁ a*(h;)Q2 = ﬁ a*(iog:) ﬁ a” (isohi)S2.
1 1 1 1
By the definition of I'(j) and the relations j*ipg = jjg and j*isch = ji h, this gives
L) U [[a" (9@ [T a*(h)2 = [T a" (o) [T o Goha) . (5.41)
1 1 1 1
Now, by the definition of T'(j) (see (5.2))), we have I'(j)* = T'(j)*U*. On the other hand by (5.37),

the r.hus. is IT(55) @ T'(j%) T17" @*(9:)2 @ T[} a*(h;)2. This proves (5.39).
To prove (5.40]), we use the following elementary properties ([17, 24]):

The operator Hy(H +1i)~" is bounded Vn €N, (5.42)
and, for any hy, - hy, € b, where b is defined in (5.38)]),
la*(hn) - @ (b ) (Hy 4+ 1) 72| < Collhalle - [Pl (5.43)

where ||kl := [dk(1 +w™1)|h(k)|?. The previous two estimates and the representation (5.37)
imply that for any ® € D((H +4)""/?) and hy,--- ,h, € ho, we have ||[[® ® [[} a*(h:)Q| <
Collhtlle - - - 1P llwl|(H +i)*/?®|| < co. This gives the second statement of the lemma. O

5.4. Asymptotic completeness. Recall that P, denotes the orthogonal projection onto the
ground state subspace of H. Below, the symbol C(¢')o;(1) stands for a positive function of e
and ¢ such that ||C(e)ot(1)|| — 0 as t — oo and we denote by xa(A) a smoothed out characteristic
function of a set €. In this section we prove the following result.

Theorem 5.4. Assume the conditions of Theorem[I.3 and let a < ¥, A = [Eqs,a] C R. Then, for
every € > 0 there is ¢, S.1.

hin Sup ||7;Z)t - I(e_iEgStPgs ® e_intX[O,a—Egs} (Hf))¢05’ || = O(El)v (5'44)
—00
which implies (L7T).

Proof. Let a, 3, k be fixed such that the conditions of Theorems [B.1] [4.1] and £.1] hold, with o = .
Let (j0, joo) = (Xb.<ctos Xb.>cte) be the partition of unity defined in Subsection 5.1l Since j2 + 52, =
1, the operator I'(j) is, as mentioned above, an isometry. Using the relation I'(§)*I'(j) = 1, the
boundedness of T'(5)*, and the existence of W, we obtain

e = D) e T (e Mgy = T(j) e~ 9o + 0,(1), (5.45)

J)
where ¢g := Witg. Next, using the property Wixa(H) = XA(ﬁ)W+, which gives W vy =
Xa(H)Wtho, and xa(H) = (X(By.a)(H) @ X(0,0- B, (Hf))xa(H), and again using xa(H)W 1 =
Wity = ¢o, we obtain

D0 = (X[Egs,a) () @ X[0,a=E) (Hf)) 0. (5.46)
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For all € > 0, there is ¢’ = ¢’(¢’) > 0, such that

(X [Ege,a) () © 1)o — (xa, (H) @ 1) — (Pgs @ 1)l < €, (5.47)
with Ay = [Egs + ¢, a]. The last two relations give
do = ((xa, (H) + Pgs) ® X[o,a— By (Hf))bo + O(€). (5.48)

Now, let ¢o¢ € Fan(D(AT'((y)))) ® Fan(ho) be such that |[¢pg — doer|| < €. (We require that
the ‘“first components’ of ¢ge are in D(dI'({y))) in order to apply the minimal velocity estimate

below, and that the ‘second components’ are in Fg, (o) in order that (Pys ® 1)¢oe is in D(I)).
This together with (5.45]) and (5.48) gives

v =T() e ((xa, (H) + Pas) ® X(p.a—r) (Hp))boer + O(€) + 04(1). (5.49)

Furthermore, let (]0, joo) be of the form ]0 = Xb<cte, joo = Xb.>cte Where X, has the same
properties as x, and satisfy jojo = jo, Jjoojoo = joo- Then, by (G39), the adjoint F( ))* to the
operator I'(j) can be represented as

L(5)" =T()" (F(jo) ® T(Jso))- (5.50)

Using this equation in (5:49]), together with the relations et — =it @ o=iHft ap e tHip, =
e‘lEgstPgS, gives

Y =) % + A+ B+ C+ O(€) + oi(1), (5.51)

where
e = (e Py @ e X0 0 (Hp) ) o (5.52)
A=TG)"TGo)e ™ xa, (H) @ T (joo)e™ ' X0 ,0- 5, (Hy)) Socr (5.53)
B :=T()"(T(jo) — e~ "= Py @ T (oo )e ™" X100 ) (H)) P00, (5.54)
C:=T(j) (e Pys @ (T'(joo) — Ve " X(0,0— ) (H)) o, (5.55)

Since I'(j)* is bounded, the minimal velocity estimate, (4.1l), gives (here we use that the first
components of ¢g are in D(dI'((y))))

1Al < [(T(Go)e™ ' xa,, (H) @ 1)
Now we consider the term given by B. We begin with
| BII < ||(T(Jo) — 1) Pys]|- (5.56)

= O()oy(1).

Since 0 < jo < 1, we have that 0 < 1 —T'(jo) < 1. Using this, the relations 1 —T'(jo) < dT'(Yp,>cte)
and dT'(Yp, >cre) < t72¢dT(b2), we obtain the bound

(T Go) — Dul® < |1 = T(o))Zull® < AT (s, sere) 7ul?
< 72| A0 (b2) 2% (5.57)

Using the pull-through formula, one verifies that dF(bf)% ws is bounded and that ||dF(bz)%PgsH =
O(t") (see Appendix [C] Lemma [C.4]). Hence, since k < «, the above estimates yield
|B]| = on(1). (5.58)

Next, using I'(joo )e st = e (et j e™™) and e“!b.e™ ™! = b, + O.t, it is not difficult to
verify (see Appendix [C] Lemma [C.3]) that

O]l < It ® (T(e™jose™ ") — 1)pe

)
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as t — oo, and hence we obtain

|Cl = C(ou(1). (5.59)
Inserting the previous estimates into (5.51]) shows that
e = L(§) e + O(¢') + C(e)or(1). (5.60)

Next, we want to pass from I'(j)* to I using the formula (5.39). To this end we use estimates
of the type (B.58) and (559) in order to remove the term I'(jo) ® I'(joo). Hence, we need to
bound I, for instance by introducing a cutoff in N. Let x,, = xn<m and X, := 1 — X and

write T(j)* e = XmD () Vser + XmIL () hrer. Using that NV/2T(5)* = f(j)*Nl/Q, and that Y €
D(N'/?) (see Appendix [C] Lemma [C4)), we estimate
o I B
IXm L () re || S m™ 2 ||NV 24| = m™2C(€).
Now, we can use (5.39]) to obtain
¥t = xmI (T(jo) @ T (Joo))thuer + O(e) + C(€')or(1) + C(€)om(1). (5.61)

Using ||xmI|| < 2™/? together with estimates of the type (5.58) and ([5.59), we find (here we need
the cutoff x;,)

Yy = XmIser + O(€) + C(€',m)oy (1) + C( o (1). (5.62)

Since ¢ € H @ Fiin(ho), we can write Py as e = Pgs @ frer, With fier € Fn(ho), and therefore

e € D(I) (here we need that fo is in Fg,(ho)). Hence x Ity = Iy + C(€')0p,(1). Combining
this with (5.62)) and remembering (5.52]), we obtain

e = 1(e” P Py @ €M1 X0 0 (Hp))doer + O(€') + C (€ ,m)oy (1) + C(€)om(1).  (5.63)

Letting t — 0o, next m — oo, the equation (5.44]) follows. O

Remark. The reason for € in the statement of the theorem is we do not know whether Ran(Pys ®

1)W_ithg € D(I). Indeed, if the latter were true, then the relations (5.63)), (5.48) and ||¢g— || < €,
where ¢ := Wi, would give

Wy = I(e_iEgstf’gs ® e_intX[o,a—Egs](Hf))% + O() + C(¢,m)oy(1) + C()om (1), (5.64)
which, after letting ¢ — oo, next m — oo and then ¢ — 0, gives
Jim [y — I(e™"Pe! Py @ €710 o o (H ) ) Wotho| = 0. (5.65)

6. PROOF OF MINIMAL VELOCITY ESTIMATES

In this section we use Theorems B.I] and [4.1] to prove the minimal velocity estimates of Theorems

[T and 2

Proof of Theorem [I.1. To prove (LI, we use several iterations of Proposition 24 We consider
the one-parameter family of one-photon operators

o =1t "Dy s,

with w := (c‘,%)z, a > 1, and v(d) > 0, the same as in ([.I4). We use the expansion ([B.6). We

compute

2b 2w
@R 1 (6.1)

dw =
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where, recall, b := %(Vw -y + h.c.). We use the notation xg = xw>1. We write b = b, + e%(iVu}-
y + h.c.), where, recall, we :== w + €, € :=t". We choose k > 0 satisfying

46 -3 >k >2—-20+v(—-1) —v(0). (6.2)

= = (be -
ctf )xv<1. Commutator estimates of the type considered in Appendix Bl (see Lemma [B.A]) give
ng_l()zzg)lm = O(t=B*%) for & > ¢/2, which, together with b, (Y/ )1/2 O(tP), yields

(Vo) 2bexost (V)2 = =& (X5)Pxoz1 (W) /2 = O K.
The last two estimates, together with v < 1 on supp )2;}21, give doy > p; — pr + rem, where

Using the notation v :=

2 c B\ -,
e W(W - )%

- 2+ )12

e S ~/\1/2
bt = /2¢B+av(0) (XB )5

Xv<1 (X3

and rem = Z?:l rem;, with rem; given by (B.6) with xg replaced by X3,

c
remg.:(/tﬁ)%—ﬁﬂw(o)( Vw - Y+ hC)
remg = Ot~ 2050 and remy := —av(0)t~'¢;. If B = 1, then we choose ¢ > (¢)? so that

pt > 0.

As in the proof of Theorem B, we deduce that the remainders rem;, ¢ = 1,2, 3,4, satisfy the
estimates (B13)), i = 1,2, 3,4, with py = po = =1, p3 = ps = 0, \y = 28+av(0), A2 = 28+k+av(0),
A3 =20 — Kk +av(0) and Ay = 1+ av(0). In particular, the estimate for i = 1 follows from Lemma
B4 Since 26 > 1+ v(—1) — av(0) and 28 — k > 1, the remainder rem = 37, rem; gives an
integrable term. (Note remy = 0, if v(0) = 0.)

Now, we estimate the contribution of p;. Let v = 28 — 1 < 8 and decompose p;r = ps1 + pro,
where

const

bu = W(X%)l/ Xc1ﬂ<b€<ctﬂ(X5)1/2

const , _, .q1/9 ~1\1/2
D2 = m(xlg) / XbeScltV(Xlg) /

with ¢; < 1, if v = 1, and ¢; < B(¢)? if v < 1, and const = C/jc. First, we estimate the

contribution of py;. Since [()2’5)1/2, (Xqﬂgbégctg)lm] = O(t=P*%) (see Lemma [B.1] of Appendix [B))

and since 28 — k > 1, it suffices to estimate the contribution of (ﬁ—%ﬁxcmgbégcm- To this end, we
use the propagation observable

dn = t="Ohgx,, (6.3)

where hg = h(cl;%), h(A) == [\° dsxs<1, and x4 = Xb—ézl' As in ([B3]), we have

1 const const
ﬁat EX»Y = Wa tﬁ hgat eX'y = t1+5 PR (64)

Using this together with (B:Zl), we compute

06 ﬁbg / / €
d¢t1 S (Ct5+au(0 - Ct6+1+a'/(0) ) BX'Y + hﬁXW(Clt,y_i_aV(o) - Clt7+1+a'/ + Z rem

where rem) is a sum of two terms of the form of rem; given in ([B.6]), with xs replaced by hg, in
one, and by x., in the other, rem) := Ot~ 1=rHr=av(0)) " and rem} := —av(0)t~1¢y. We estimate
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O — Bfé >1— 1o — tlﬁfcﬁ on supp by and 0 — 7b€ <1- — 5ty on supp x4. Using hj <0,

WetF We tﬁ 2t1—~

X’7 >0, hg<1— cﬁ—% and cl;% =0t~ 5+”’) on suppxw this gives

dén < —py + per + rem’,
with rem’ := S°F rem!, rem), := w120 (t=Fm=(0))y=1/2 and

LY . 1

/o g—av(0)1 N /
Py =t (1 ; )%X% b1 = 7 +av(0) X+

By B3], the term py; gives an integrable contribution. We deduce as above that the remainders
rem}, i = 1,2,3,4, satisfy the estimates B8I3), ¢ = 1,2,3,4, with p; = p2 = p3 = 0, ps = —1,
M =2y—k+av(0), da = 1+v—k+av(0), A3 = 1+ av(0), and \y = 5+ k + av(0). Since
2y—k>1,v>k,and B+ K > 1+ v(—1) — av(0), the remainder rem’ = >, rem/ is integrable.
Finally, 24) with X' < av(0)+ (2 + 1) holds by Lemma [B.6] of Appendix[Bl Hence, ¢y is a strong
one-photon propagation observable and therefore we have the estimate

/1 G| ()22 < / QAT ()24 |2 < o121 (6.5)

(In fact, by multiplying the observable (6.3]) by ¢ for an appropriate § > 0, we can obtain a stronger
estimate.)

Now, we consider pp. Let fg = f(w), Where f(A) == xa>1 and, recall, w = (‘,tg)z, and

hy = h(vy), with h(X) == [{° dsxs<1 and vy =

o ﬂ We use the propagation observable

b2 ==t O (fahy + hy f3). (6.6)
Using (317), 38), (61), b = b + e%(w—lrin -y + h.c.), be < e1t? on supp xo,<1, ¥ = 26 — 1 and
[(f5)*/%, hy) = O(t™7F*) (see Lemma [B.I] of Appendix [B), we compute

4
dor sr“”m’(((;% B)= <fﬁ>1/2h (fp)'/2 + fahl(dvy) + (dvy)R, f5) + ) rem?,

i=1

cf; - 01;’%, rem/ is a term of the form of rem; given in ([B.6]), with xs replaced

by fs, likewise, rem) is a term of the form of rem; given in (B.6), with xs replaced by h.,

and rem)y = Ot~ 177 ~w(0)) and rem) := —av(0)t 'pw. To estimate dv, = Cf; — c;z%,
we use that fp > 0, hl < 0, 6 = 1 —t"w !, v, < B, and fghl (dv,) + (dvy)R,fs =

€

—]“51/2(—hfy)1/2(dvv)(—hfy)l/zfﬁl/2 + Ot~ 71%) (see again Lemma [B1l of Appendix [Bl), to obtain

where dv, =

e < —pjp + rem”,

with rem” := 3% | rem, rem{ = Ot~ =) rem! = w120 (t=1==(0)),=1/2 and (at least
for ¢ sufficiently large)

261
(c)?
Since (fﬁ < B and either y <1lory=1and ¢; <1, and f; > 0 and hi/ < 0, both terms in the
square braces on the r.h.s. are non-positive. We deduce as above that the remainders rem/, i =
1,...,6, satisfy the estimates (B13), ¢ = 1,...,6, with p;1 = psg = —1, p2 = p3 = ps = p5 = 0,
A =284av(0), Ay = A5 = 2y—k+av()), A3 = 1+y—k+av(0), Ay = 1+av(0), A\¢ = v+x+av(0).
Since 28 > v+ k > 1+ v(—1) —av(0), 2y — K > 1 and v > K, the condition (23] is satisfied.

—25)%(fé)1/2h«,(fé)1/2+(1 'YCI) f1/2 , 1/2]‘

Pl =t O [ ( i
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Moreover, Z4) with X' < av(0) + (2 + p)B holds by [9, Lemma 3.1]. Therefore ¢y is a strong
one-photon propagation observable and we have the estimate

o o0
[ dtare) PP s [ atlaren) el S il (6.7)
1 1

(In fact, by multiplying the observable (6.6]) by ¢ for an appropriate § > 0, we can obtain a stronger

estimate.)

Since Py = py1 + pr2, estimates (6.5) and ([6.7) imply the estimate
(o]
[ dar) P < el (65)
1

which due to )2’5 A Xv=1, implies the estimate (LI7]). O

Proof of Theorem[1.2. To prove (I.19)), we begin with the following estimate, proven in the local-
ization lemma [B.5] of Appendix Bl

Xbescrte Xyl <etn = O @7), (6.9)

fore=t7" Kk < o, and ¢ < /2. Now, let Xg€<c/ta + Xg€>c,ta = 1 and write

Xy <ete = Xbe<e'to Xiy|<eto Xbo<ete + R < X <o + R, (6.10)
where R := xp, </t Xfy‘gctaxbezclta FXbe>cte X\2y|§cta Xbe<c/te+Xbe >/ to X\2y|§cta Xb.>c'te- The estimates
(69) and (6.10) give

2 2 —(a—
XEy<ote < Xpocorra + O 7)), (6.11)
which in turn implies
IT Xy <ete) 20l S IT O <erna) 20l + CE @D (N + 1)) (6.12)
This, together with (&1]), yields (LI9)). O

APPENDIX A. PHOTON # AND LOW MOMENTUM ESTIMATE

Recall the notation (A), := (1, Ay). The idea of the proof of the following estimate follows [24]
and [9].

Proposition A.1l. Assume (LI0) with p > —1/2. Let 1y € D(dT(w?)'/?). Then for any p €
[_171]}

(dL@"))ge S " PNlollE + (AT (@) o v(p) = 5= (A.1)

Proof. Decompose dI'(w”) = Ky + Ko, where
K = dl(wfxiow<1) and  Ka:= dT(w’xpew>1)-

Then, by (LI,
(K2)y < (A0t Pwxgowz))e < 10070 (Hy)y, S 7070 yollF. (A.2)

On the other hand, we have by (210,
DKl = dF(awl_pto‘_lxiawgl) — I(inXtawglg)- (A3)

Since [|g(k)||2, < |k|*€(k) (see (ILI0)), we obtain

/ WXt g (R, (w1 + 1)k < 20 tutoe, (Ad)
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This together with (2.11]) and (LI3]) gives
(I (i Xrow19)) el S ¢ o (A.5)
Hence, by (A.3)), since 0;(K1)y, = (DK1)yy;, Xjay,<1 < 0, we obtain

(K1), S t70HF0 g1

and therefore

(K1)g, < C8 [0l + (AT (@) g (A.6)
where v/ =1 — 14+ p+p)a, if (1+p+p)a<land v/ =0,if (14 p+ p)a > 1. Estimates (A6
and (A.2) with a = ﬁ, if p <1, give (Al). The case p = 1 follows from (LI5]). O

Corollary A.2. Assume ([LI0) with p > —1/2, let g € D(dT(w™")/?), and denote K, :=
dT'(w™"). Then for any v > 0 and any ¢ > 0,

X

_ _1+p e
Xk, zerrell S 72 F 700 (|13 + 672 (K p) . (A7)
Proof. We have

. 1 . 1
X, >ctre]l < 72872 (XK, > Kt < 72872 || K|
Now applying (A1) we arrive at (A.7). O

Remark. A minor modification of the proof above give the following bound for p < 0 and
11 (IO) = %__i_pua

(A0 @)y, S 7 (el R + IvollEr) + (AT (@) (A.8)

APPENDIX B. COMMUTATOR ESTIMATES

In this appendix, we estimate some localization terms and commutators appearing in Section [3l
Recall that b, := %(HEVw'y—l— h.c.), where 6, = w%, We :=w+e€, € =t"" with k > 0. The following
lemma is a straightforward consequence of the Helffer-Sjostrand formula. We do not detail the
proof.

Lemma B.1. Let h,h be smooth function satisfying the estimates |8§‘h(8)‘ < Cp(s)™™ forn >0

and likewise for h. Let we = |y|/(c1t®), vg = be/(cat?), with 0 < a, 3 < 1. The following estimates
hold

[h(wa),w] = O™),  [h(vg),w] =O(tF),  [h(wa),b] = O(t"),
[B(wa), h(vg)] = O7F),  be[h(wa), h(vp)] = O(t").
Now we prove the following abstract result.

Lemma B.2. Let h be a smooth function satisfying the estimates |87h(s)| < Cy(s)™" for n > 0.
Assume that the commutators [v,w] and [v, [v,w]] are bounded, and for some z in C\ R, (v — z)~*
preserves D(w). Then the operator r := [h(v),w] — [v,w]h’(v) is bounded as

Irll < [, v, @I (B.1)

Proof. We would like to use the Helffer—Sjostrand formula for h. Since h might not decay at
infinity, we cannot directly express h(v) by this formula. Therefore, we approximate Ai}(v) as follows.

Consider ¢ € CF°(R; [0,1]) equal to 1 near 0 and ¢g(-) = ¢(-/R) for R > 0. Let h be an almost
analytic extensions of h such that h|g = h,

supph C {z €C; |Imz| < C(Re2)}, (B.2)
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|h(z)| < C and, for all n € N,

;(z)‘ < Cp(Re2)P~17| Im 2|". (B.3)

Similarly let ¢ € C§°(C) be an almost analytic extension of ¢ satisfying these estimates. As a
quadratic form on D(w), we have

[1(v),w] = s-1im [(orh)(v),w]. (B.4)

Since (v — 2)~! preserves D(w) for some z in the resolvent set of v (and hence for any such z, see
[l Lemma 6.2.1]), we can compute, using the Helffer-Sjostrand representation for (¢rh)(v),

[(@Rh /8 goRh v — z)_l,w] dRezdIm z

= /@(@Rh)(z)(v — z)_l[v,w](v — z)_1 dRezdIm z
= [v,w](prh) (v) + TR, (B.5)

as a quadratic form on D(w), where

:——/8 (Prh) (2 ) —2)"" [v,w]](v—2)"" dRezdIm 2

/8 (@rh)(2)(v — 2)" v, [v,w]](v — 2) "2 dRe z dIm . (B.6)
Now, using (v — z)~* = O(|Im z|7!), we obtain that
H(v —2) Mo, [v,w]](v — 2) 2H < JImz|™ 3H [v w]]H (B.7)
Besides, for all n € N,
10:(rh)(2)] < Cp(Rez)?™ 17" Imz[", (B.8)

where C,, > 0 is independent of R > 1. Using (B.6) together with (B.7)), we see that there exists
C > 0 such that |[rg|| < C||[v, [v,w]||, for all R > 1. Finally, since (prh)'(v) converges strongly to
h'(v), the lemma follows from (B.5) and the previous estimate. O

We want apply the lemma above to the time-dependent self-adjoint operator v := C%B.

Corollary B.3. Let h be a smooth function satisfying the estimates |01h(s)| < Cp(s)™" forn >0
and let v := cﬁ—%, wherec > 0,e =t7", with0 < k < 8 < 1. Then the operator r := dh(v)—(dv)h'(v)
is bounded as

[rl] <t A =28 — k. (B.9)

Proof. Observe that
dh(v) — (dv)h' (v) = [h(v),iw] — [v,iw]h (V) + Oh(v) — (B)K (V).

It is not difficult to verify that (v — z)~! preserves D(w) for any z € C\ R. Hence it follows from
the computations

[v,iw] = t~P6,, [v, [v,iw]] = 720w %€, (B.10)
that we can apply Lemma The estimate
[v, [v,w]] = O(w 1t=2) = O(t_25+“) (B.11)
then gives

([R(v),iw] — [v,iw]h (v)|] < 720",
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It remains to estimate ||Oph(v) — (9pv)h/(v)]|. Tt is not difficult to verify that D(b.) is independent of
t. Using the notations of the proof of Lemma[B.2 and the fact that 9;h(v) = s-limp_0 O (@rN)(v),
we compute

O(prh)(v /8 (Zrh)(2)8 (v — 2) ' dRe z dIm 2

- /@(@Rh)(z)(v — )" (@w)(v — 2)~ dRezdlm 2
= (0w)(¢rh) (v) + 7R,

where
:——/8 (Prh) (2 )[(v—2)"" 0w (v —2)"' dRe zdIm 2
=— / 9:(Frh)(z)(v — 2) " v, v](v — 2) "2 dRe z dIm . (B.12)
T
Now using v = gng cfﬁ O¢be together with (B.8]), we estimate

[U, atv] _ O(t—1—2ﬁ+li)be + O(t_1_2ﬁ+2n).

From this, the properties of 3, h, and k < 8, we deduce that [EENBS t—1=A+r < =284 yniformly
in R > 1. This concludes the proof of the corollary. O

The following lemma is taken from [9]. Its proof is similar to the proof of Lemma

Lemma B.4. Let h be a smooth function satisfying the estimates |01h(s)| < Cp(s)™" for n > 0
and 0 < 6 < 1. Let w = y?/(ct*)? with 0 < a < 1. We have
1
[h(w),iw] = Ct—ah/(w)(— Vw+ Vw - %) + rem,
with
Hw% rem w3 H < e+,

Now we prove a localization lemma.
Lemma B.5. Let £ < a. We have, for ¢ < /2,
Xbe>cto X|y|<cte = O(t_(a_ﬁ)). (B13)

Proof. Observe that by the definition of x (see Introduction) and the condition ¢ < /2, we
have X|y|>crto X|y|<cte = 0. Let c<c< /2 and let X|y|<et be such that x|y<ceX|y<et = Xy|<et
and X|y>¢tX|y|<et = 0. Define be := X|yj<gabeX|y<ere- It follows from the expression of b that
|(u, beu)| < |Jul/|||y|v||, and hence we deduce that |(u,b.u)| < &<|u|?. This gives Xp >crte = 0.
Using this, we write

Xbe>erte Xjy|<ete = (Xbe>c/ta = Xp, >era) X|y|<cte- (B.14)
Let a := c?fa and a := Cf_’;a. Denote g(a) := Xp.>crre and g(a) 1= Xp.>epa- We will use the

construction and notations of the proof of Lemma [B.2l Using the Helffer-Sjostrand formula for
(prg)(c), we write

(prg)(a) — (prY)( /8 org)(2)[(a — 2)~—(a— z)_l] dRe zdIm z

= ——/8 ?r9)(2)(a —2)"Ya —a)(@a—2) ' dRezdIm 2. (B.15)
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Now we show that (a —a)(a — z) x|y |<cte = Ot~ (@) Im 2|~2). We have

a—a= (1= Xpyl<ae) ga T Xyi<an gz (L= Xpyi<ae);
and we observe that, by Lemma [B.1],
[(1 - >2|y\§6t0)7 be] = O(t’i)- (B16)
Thus
_ - b - —(a—
a—a= (1 + X|y\§6t°‘)c/ﬁ(1 - X\y|§5to‘) + O(t (o R))v

Moreover, we can write

(1 - >2|y\§6ta)(a - Z)_1X|y\§cta = [(1 - >2|y\§6ta)7 ((_1 - z)_l]X\yEctQ

— (= )7 [(1 — Ky~ (@ = )y e

ct®
= Ot M) | Im 2| 7?),
where we used (B.16) to obtain the last estimate. This implies the statement of the lemma. 0
Remark. The estimate (B.I3) can be improved to xp, >t X|y|<cte = O(t=™=") for any m > 0,
if we replace w, := w + € in the definition of b, by the smooth function w, := vVw? + €2.

In conclusion of this appendix we reproduce a statement corresponding to [9, Lemma 3.1] with
be instead of |y|. The proof is the same.

Lemma B.6. Assume Hypothesis (LI0]) on the coupling function g is satisfied for some —% <u<

%. Then

. 3
an{kZCt&g(k)HL2(R3;HP) S_, t 5 T < (5 + ,LL)O(

APPENDIX C. TECHNICALITIES

In this appendix we prove technical statements used in the main text. Most of the results we
present here are close to known ones. We begin with the following standard result, which was used
implicitly at several places.

Lemma C.1. Let a,b be two self-adjoint operators on b with b > 0, D(b) C D(a) and ||ay|| < ||by||
for all ¢ € D(b). Then D(dI'(b)) C D(dI'(a)) and ||dT'(a)®|| < ||dT(0)®|| for all & € D(dL'(b)).

We recall that, given two operators a,c on b, the operator dI'(a,c) was defined in (5.10), and
dI'(a,c) := UdI'(a,c).

Lemma C.2. Let j = (jo, joo) and ¢ = diag(co, Coo), Where jo, joo, €0y Coos C1, C2 are operators on l.
Furthermore, assume that jgjo + jijoo < 1. Then we have the relations

(b, dT'(j, €)ib)| < AT (|co|)2 @ 1] [T (|eo]) 25|
+ {11 ® AT (|eoo ) 2 [[AT (oo ) 79, (C.1)
|(u, dT(j, c1¢2)0)| < [T (ere}) Zul|[[ AT (cea) Z0]]. (C.2)
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Proof. Let b = U*(Zﬁ and for an operator b on h define operators igh := diag(h,0) and isb :=
diag(0,b) on b @ h. Since U*dT(|cg|)2 ® 1U = dT(ig|co|)? and U1 ® dT'(|eae|)2U = dT(ino|eso ),
the statement of the lemma is equivalent to
= . . 1~ 1
(¢, dT'(4, )¥)| <[|dL(do|col) 2 [[[dL(|eo) 29
. 1= 1
+ [[dL (iso|€s0]) 2 [[|AT (e ) 22| (C.3)

We decompose dI'(j,¢) = dI'(j,i0co) + dI'(J, icoCoo) and estimate each term separately. We have,
using that [|j|| <1,

(B, AT Giyioco))| < 3 lliocol? @, liocol 746,

=1

where |igcgl; == 1® -+ ® 1 ® igleg] ® 1 ® - ® 1, with the operator |igcy| appearing in the I*!
component of the tensor product. By the Cauchy-Schwarz inequality, we obtain

- & 1.1 e N 2
(6, T Gisioco))] < S lliocol? dlllliocol?wll < (3 iocol? 312)* (3 liocol v2)
=1 =1 =1

N

= [T (Jiocol) 2 || [[AT (Jigeol) 2|

Since [|dT(Jioco]) 29|l Fpan) = 1AT(|co])2 %]l #(5), We obtain the first term in the r.h.s. of (C:3). The
second one is obtained exactly in the same way. (C.2)) can be proven in a similar manner. O

In the following lemma, as in the main text, the operator j,, on L2(R3) is of the form j,, =
Xbe>cte, Where, recall, be = $(ve(k) - y + h.c.), where v (k) := 0. Vw, 0 = oroand e=1"" k> 0.
Lemma C.3. Assume a+ £ > 1. Let u € F. Then ||(T'(joo) — 1)e *Hrtul| — 0, as t — oco.

Proof. Assume that u € D(dI'({y))). Using unitarity of e=*#s! and the fact that e~*Hst = T'(e=%?),
we obtain

H(F(]oo) _ 1)6—2'HftuH — H( uut‘7 e zwt UH < HdF zwtj e zwt)u|7

(C.4)

where joo = 1 — joo. Using the identity b~ = b, + 6.t and the Helffer-Sjostrand formula
show that

- b - be + Ot
itw € < 1) —itw _ < € € < 1) .
¢ X(cta =2)° X c*

Since a+ k > 1, we have Xbctter o = Xbett ) + Ot~ (@5~ Due to % > 1 on supp Xbett <q for

t sufficiently large, we have

2b, 2(y
gt crl < 1 0l < 122,

and therefore
2
HdF(X—”€+06t<1)uH < —HdF((y))uH

Together with (), this shows that ||(D(joo) — 1)e”#rtul| — 0, for w € D(dI'((y))). Since
D(dI'((y))) is dense in F, this concludes the proof. O

Lemma C.4. Assume (LI0) with p1 > —1/2 and (LII)). Then Ran(Pyg) C D(N%)HD(dF(bg)%), in
other words, the operators N%Pgs and dF(bg)%Pgs are bounded. Moreover, we have HdF(bg)%PgsH =
O(t").
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Proof. Let @5 € Ran(Pys). The statement of the lemma is equivalent to the properties that
ks [la(k)@gsll, k> [[bea(k)@gs|| € L2(R?), (C.5)
and that [|bea(k)®gs| 123y = O(t*). The well-known pull-through formula gives
a(k)Pgs = —(H — Egs + |k7|)_19(k)q)gs-

Since ||(H — Egs + |k|) 7| < |k|~! one easily deduces that [a(k)®gs|| € L?(R3) for any p > —1/2.
Likewise, using in addition that be = w ' 4(k - Vi 4+ V. - k) — iw/(2w?), together with

I[(k - Vi + Vi - k), (H = Egs + [k[) 7| S IEI(H = Egs + k)72 S [KI7Y
and (LI0)-(LII), one easily deduces that ||bea(k)®gs||2(rsy = O(t") for any p > —1/2. O

SUPPLEMENT I. THE WAVE OPERATORS

In this supplement we briefly review the definition and properties of the wave operator 2, and
establish its relation with W, in Theorem 1.2 below. Let Hy = Hyp(H) N L (_o 5y (H) be the
space spanned by the eigenfunctions of H with the eigenvalues in the interval (—oo, ). Define
bo := {h € L*(R?), [ |h|?(|k|~" + |k[?)dk < oo}. The wave operator Q; on the space Hy, @ Fn(ho),
is defined by the formula

Qy = slim e [(e7H @ ¢~ itHy), (L.1)
t—o0

As in [14], 16 17, 28], it is easy to show

Theorem 1.1.  Assume (LIQ0) with p > —1/2 and (LII). The wave operator Qi exists on
Hp @ Fan(ho) and extends to an isometric map, Q4 : Has — H, on the space of asymptotic states,
Has .= Hp ® F.

Proof. Let hy(k) := e~ ®*lp(k). For h € D(w™'/?), s. t. 8°h € D(W!*=1/2), |a| < 2, we define the
asymptotic creation and annihilation operators by (see [14] [16] 17 24] 28])

af (h)® = t_l}gloo etHa# (hy)e " H @,

for any ® € D(|H|'/?) NRanE(_ x)(H). Here a* stands for a or a*. To show that a¥f (h) exist
(see [16, 28]), we define afé(h) = eHaq# (hy)e ™ and compute aﬁé(h) - afé(h) = fttl dsdsal (h)
and d,al’ (h) = ietGe ™t where G :=[H,a¥ (hy)]—a® (why) = (g, ht) 12 (qxy for a” = a* and
—(h¢, g) 2(dk) for a? = a. Thus the proof of existence reduces to showing that one-photon terms
of the form (g, h;) are integrable in ¢. By (LI0), we have |[(ng, he) p2(am 7, S (1+1)717¢, with

0 < & < p+ 1, which is integrable. Moreover, as in [16, 28] one can show that aﬁ(h) satisfy the
canonical commutation relations and relations a(h)¥ = 0, and

lim e a#(hy ) a (hny)e B ® = a¥ (hy) - - aZf (h,)®, (1.2)

t—+oo

for any U € My, h,hi, -, hn € ho, and any ® € 1_)(H). We define the wave operator QT on
,Hﬁn by

A (P®a*(hy)---a*(hy)Q) :=a’ (hy)---a’ (hy)®. (1.3)
Using the canonical commutation relations, one sees that {14 extends to an isometric map €4 :
H, — H. Using the relation e (® @ a¥(hy) - - - a¥ (h,)Q) = (e Dgs) @ (a¥ (hy ) - - - a¥ (hi 1)),
the definition of I and ([.2)), we identify the definition (L3) with (LI)). O
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Recall that P, denotes the orthogonal projection onto the ground state subspace of H. Let
Pgs =1 — P, and Pq :=1 — Pq, where, recall, Py is the projection onto the vacuum sector in F.
Theorem [5.4] and its proof imply the following result.

Theorem 1.2. Under the conditions of Theorem [5.4), we have on Ran xa (H)
Q. (Pys ® Po) Wy Pys + Py = 1. (1.4)

Proof. Let ¢y € Ran xa(H). For every €’ > 0 there is 6" = §(¢”) > 0, s.t.

H¢0 - ¢05” - PgSTZ)OH < 6”7 (1-5)

where Yoer = xa_, (H)o, with Ao = [Eg + 0,a]. Proceeding as in the proof of Theorem [5.4] with
e instead of 1)y, we arrive at (see (5.63))

Yoo = e U (e Bt Py @ e sty o (Hp) o + O(€) + O, m)or(1) + C()om(1),  (L6)

where we choose ¢ge such that ¢g . € D(AT((y))) @ Fan(ho) and [|[Withger — doer || < €. Now using
Theorem 1.1, we let t — oo, next m — 0o to obtain

Poer = Qi (Pas @ X(0,0— B (H))Poer + O(€). (L.7)
Since Q4 is isometric, hence bounded, we can let ¢ — 0, which gives
Yoer = it (Pas @ X(0,a— Bga) (H 7)) Wi thoer = Q4 (Pys @ Po) W Pysthoer. (1.8)

Here we used that )_((o,a—Egs](Hf) = pQX(Oﬂ_EgS}(Hf), together with X (g,q—p,.) (Hy)Withoer =
Withoer and hger = Pasthoer. Introducing (L) into (LI) and letting ¢’ — 0, we obtain

7/}0 = Q-i—(Pgs & PQ)W-FPgst + Pgsl/JOa
which gives (L.4)). O

SUPPLEMENT II. CREATION AND ANNIHILATION OPERATORS ON FOCK SPACES

With each function f € b, one associates creation and annihilation operators a(f) and a*(f)
defined, for v € ®7H, as

*():u—)x/n—i-lf@su and  a(f) :u— v/n(f,u)y,

with (f,u)y := [ f u(k,ky, ..., ky—1)dk. They are unbounded, densely defined operators of I'(h),
adjoint of each other (Wlth respect to the natural scalar product in F) and satisfy the canonical
commutation relations (CCR):

[a#(f)ya#( )] =0, [a(f).a’(9)] = (f.9),

where a” = a or a*. Since a(f) is anti-linear and a*(f) is linear in ¢, we write formally

N~ [T ()= [ £a" k) dk

where a(k) and a*(k) obey (again formally) the canonical commutation relations
[a¥(k),a”(K)] =0, [a(k),a* (k)] = 8(k —K'),

Finally, given an operator b acting on the one-photon space the Operator dI'(b) defined on the
Fock space F by (L2)) can be written (formally) as dI'(b) := [ a* k) dk, where b acts on the
variable k.

The following bounds on a(f) and a*(f) are standard (see e.g. [29]).
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Lemma IL.1.  Recall the notation ||h|. = [dk(1 +w ™ )|h(k)]>. Let f € h = L*(R3). The
operators a(f)(N 4+ 1)~Y2 and a*(f)(N +1)~Y2 extend to bounded operators on M satisfying

la(HN + D72 < If [l (DK + )72 < V2.

If, in addition, f satisfy w='/2f € L*(R?), then the operators a(f)(Hy + 1)~Y2 and a*(f)(Hy +
1)_1/ 2 extend to bounded operators on H satisfying

la(H @y + 172 < w2l fla" (DS + 1072 < £l
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