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Abstract

The geometrical application of split octonions is considered. The new representation of products of the basis 
units of split octonionic having David's star shape (instead of the Fano triangle) is presented. It is shown that 
active and passive transformations of coordinates in octonionic “eight-space” are not equivalent. The group of 

passive transformations that leave invariant the pseudonorm of split octonions is SO(4,4), while active rotations 
are done by the direct product of O(3,4)-boosts and real noncompact form of the exceptional group G2. In 
classical limit, these transformations reduce to the standard Lorentz group. 

1. Introduction

Nonassociative algebras may surely be called beautiful mathematical entities. However, they have never been 
systematically utilized in physics, only some attempts have been made toward this goal. Nevertheless, there are 
some intriguing hints that nonassociative algebras may play essential role in the ultimate theory, yet to be 
discovered. 

Octonions are one example of a nonassociative algebra. It is known that they form the largest normed algebra 
after the algebras of real numbers, complex numbers, and quaternions [1–3]. Since their discovery in 1844/1845 

by Graves and Cayley there have been various attempts to find appropriate uses for octonions in physics (see 
reviews [4–7]). One can point to the possible impact of octonions on: Color symmetry [8–11]; GUTs [12–15]; 
Representation of Clifford algebras [16–19]; Quantum mechanics [20–24]; Space-time symmetries [25, 26]; 
Field theory [27–29]; Formulations of wave equations [30–32]; Quantum Hall effect [33]; Kaluza-Klein program 

without extra dimensions [34–36]; Strings and -theory [37–40]; and so forth. 

In this paper we study rotations in the model, where geometry is described by the split octonions [41–43]. 

2. Octonionic Geometry

Let us review the main ideas behind the geometrical application of split octonions presented in our previous 
papers [41–43]. In our model some characteristics of physical world (such as dimension, causality, maximal 

velocities, and quantum behavior) can be naturally described by the properties of split octonions. Interesting 
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feature of the geometrical interpretation of the split octonions is that their pseudonorms, in addition to some 
other terms, already contain the ordinary Minkowski metric. This property is equivalent to the existence of local 
Lorentz invariance in classical physics. 

To any physical signal we correspond eight-dimensional number, the element of split octonions, 

Here we have one scalar basis unit (denoted as ), the three vector-like objects , the three pseudovector-like 

elements , and one pseudoscalar-like unit . The eight real parameters that multiply basis elements we treat as 

the time , the special coordinates , some quantities  with the dimensions , and the quantity  

having the dimension . We suppose also that (2.1) contains two fundamental constants of physics: the 

velocity of light  and the Planck constant . 

The squares of basis units of split octonions are inner product resulting unit element, but with the opposite signs, 

Multiplications of different hypercomplex basis units are defined as skew products 

where  is the fully antisymmetric tensor. 

From (2.3) we notice that to generate complete basis of split octonions the multiplication and distribution laws of 
only three vector-like elements  are needed. In geometrical application this can explain why classical space has 

three dimensions. The three pseudovector-like basis units  can be defined as the binary product 

and thus can describe oriented orthogonal planes spanned by two vector-like elements . The seventh basic unit 

 (the oriented volume) is formed by the products of all three fundamental basis elements  and has three 

equivalent representation: 

The multiplication table of octonionic units is most transparent in graphical form. To visualize the products of 
ordinary octonions the Fano triangle is used [1–3], where the seventh basic unit  is place at the center of the 

graph. In the algebra of split octonions we have less symmetry, and for a proper description of the products (2.3) 
the Fano graph should be modified by shifting  from the center of the Fano triangle. Also we will use three 

equivalent representations of , (2.5), and, instead of the Fano triangle, we arrive at David's star shaped duality 

plane for products of the split octonionic basis elements.  

On this graph the product of two basis units is determined by following the oriented solid line connecting the 
corresponding nodes. Moving opposite to the orientation of the line contributes a minus sign to the result. 
Dashed lines just show that the corners of the triangle with  nodes are identified. 

Conjugation, which can be understand as a reflection of the vector-like basis units , reverses the order of 

octonionic basis elements in any given expression, thus 

there is no summing in the last formula. So the conjugation of (2.1) gives 

Using (2.2) one can find that the pseudonorm of (2.1), 

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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(2.8)



has  signature. If we consider  as the interval between two octonionic signals we see that (2.8) reduces to 

the classical formula of Minkowski space-time in the limit . 

Using the algebra of basis elements (2.3) the octonion (2.1) can be written in the equivalent form 

We notice that the pseudoscalar-like element  introduces the 'quantum' term corresponding to some kind of 

uncertainty of space-time coordinates. For the differential form of (2.9) the invariance of the pseudonorm (2.8) 
gives the relation: 

where  denotes 3-dimensional velocity measured in the frame (2.1). The generalized Lorentz factor 

(2.10) contains extra terms that vanish in the limit . So the dispersion relation in our model has a form similar 

to that of double-special relativity models [44, 45]. 

From the requirement to have the positive pseudonorm (2.8) from (2.10) we obtain several relations 

Recalling that  and  have dimensions of  and , respectively, we conclude that the 

Heisenberg uncertainty principle in our model has the same geometrical meaning as the existence of the maximal 
velocity in Minkowski space-time. 

3. Rotations

To describe rotations in 8-dimensional octonionic space (2.1) with the interval (2.8) we need to define 
exponential maps for the basis units of split octonions. 

Since the squares of the pseudovector-like elements  are negative, , we can define 

where  are some real angles. 

At the same time for the other basis elements , which have the positive squares , we have 

where  and  are real numbers. 

In 8-dimensional octonionic “space-time’’ (2.1) there is no unique plane orthogonal to a given axis. Therefore 

for the operators (3.1) and (3.2) it is not sufficient to specify a single rotation axis and an angle of rotation. It can 

be shown that the left multiplication of the octonion  by one of the operators (3.1), (3.2) (e.g., ) yields four 

simultaneous rotations in four mutually orthogonal planes. For simplicity we consider only the left products since 
it is known that one side multiplications generate the whole symmetry group that leaves the octonionic norms 
invariant [46]. 

So rotations naturally provide splitting of an octonion in four orthogonal planes. To define these planes note that 
one of them is formed by the hypercomplex element that we chose to define the rotation (  in our example), 

together with the scalar unit element of the octonion. The rest orthogonal planes are given by the three pairs of 
other basis elements that lie with the considered basis unit (  in the example) on the lines emerged it in David's 

star (see Figure 1). Thus the pairs of basis units that are rotated into each other are the pairs that form 
associative triplets with the considered basis unit. For example, the basis unit , according to Figure 1, has three 

different representations in the octonionic algebra: 

So the planes orthogonal to  are , and . Using (3.3) and the representation (3.1) it is 

possible to “rotate out’’ the four octonionic axes, and (2.1) can be written in the equivalent form 

(2.9)
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where 

are the norms in four orthogonal octonionic planes. The corresponding angles are given by 

This decomposition of split octonion is valid only if the full pseudonorm of the octonion (2.8) is positive, that is, 

A decomposition similar to (3.4) exists if the another pseudovector-like basis unit,  or , is fixed. 

In contrast with uniform rotations giving by the operators  we have limited rotations in the planes orthogonal 

to  and . However, we can still perform a decomposition similar to (3.4) of  using expressions of the 

exponential maps (3.2). But now, unlike on (3.5), the norms of the corresponding planes are not positively 
defined and, instead of the condition (3.7), we should require positiveness of the norms of each four planes. For 
example, the pseudoscalar-like basis unit  has three different representations (2.5), and it can provide the 

hyperbolic rotations (3.2) in the orthogonal planes , and . The expressions for the 2 

norms (3.5) in this case are: , and .
 

Now let us consider active and passive transformations of coordinates in 8-dimensional space of signals (2.1). 

With a passive transformation we mean a change of the coordinates , and , as opposed to an active 

transformation which changes the basis , and . 

The passive transformations of the octonionic coordinates , and , which leave invariant the norm (2.8) 

form . We can represent these transformations of (2.1) by the left products 

where  is one of (3.1), (3.2). The operator  simultaneously transforms four planes of . However, in three 

planes  can be rotated out by the proper choice of octonionic basis. Thus  can represent rotations separately in 
four orthogonal planes of . Similarly we have some four angles for the other six operators (3.1), (3.2) and thus 

totally  parameters corresponding to  group of passive coordinate transformations. For example, 

in the case of the decomposition (3.4) we can introduce four arbitrary angles , and , and 

Obviously under these transformations the pseudonorm (2.8) is invariant. By the fine tuning of the angles in (3.9) 
we can define rotations in any single plane from four. 

Now let us consider active coordinate transformations, or transformations of basis units , and . For them, 

because of nonassociativity, the results of two different rotations (3.1) and (3.2) are not unique. This means that 
not all active octonionic transformations (3.1) and (3.2) form a group and can be considered as a real rotation. 

Thus in the octonionic space (2.1) not to the all passive -transformations we can make corresponding 

active ones, only the transformations that have a realization as associative multiplications should be considered. 
It is known that associative transformations can be done by the combined rotations of special form in two 

octonionic planes that form a subgroup of , known as the automorphism group of split octonions  (the 

real noncompact form of Cartan's exceptional Lie group ). Some general results on  and its subgroup 

structure can be found in [47,16b]. 

Let us recall that the automorphism  of a algebra is defined as the transformations of the hypercomplex basis 
units  and  under which the multiplication table of the algebra is invariant, that is, 

 

Figure 1: Split octonion multiplication as David's star.
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Associativity of these transformations is obvious from the second relation, and the set of all automorphisms of 
composition algebras form a group. In the case of quaternions, because of associativity, active and passive 

transformations,  and , respectively, are isomorphic and quaternions are useful to describe rotations in 

3-dimensional space. One has a different situation for octonions. Each automorphism in the octonionic algebra is 
completely defined by the images of three elements that do not form quaternionic subalgebras, that is, they all 

not lie on the same David's line [49]. Consider one such set, say . Then there exists an automorphism 

where  and  are some independent real angles. By the definition (3.10) the automorphism does not affect 

unit scalar . The images of the other basis elements under automorphism (3.11) are determined by the 

conditions  

It can easily be checked that transformed bases  satisfy the same multiplication rules as . 

There exist similar automorphisms with fixed  and  axes, which are generated by the angles  and , 

respectively. 

One can define also hyperbolic automorphisms for the vector-like units  by the angles . For example, for 

fixed  similar to (3.11) and (3.12) transformations are 

Analogously in the case of fixed  we find that 

So for each octonionic basis there are seven independent automorphisms each introducing two angles that 

correspond to  generators of the algebra . For our choice of basis the infinitesimal passive 

transformation of the coordinates, corresponding to , has the form 

(3.10)

(3.11)

  

(3.12)

(3.13)

(3.14)

(3.15)



where  is the symmetric matrix 

In the limit  the transformations (3.15) reduce to the standard  rotations of Euclidean 3-space by 

the Euler angles . 

The formulas (3.15) represent rotations of (3,4)-sphere that is orthogonal to the time coordinate . To define the 

boosts note that active and passive forms of mutual transformations of  with , and  are isomorphic and 

can be described by the seven operators (3.1) and (3.2) (e.g., the first term in (3.9), which form the group . 

In the case  we recover the standard  Lorentz boost in the Minkowski space-time governing by the 

operators , where . 

4. Conclusion

In this paper the David's star duality plane, which describes the multiplication table of the basis units of split 
octonions (instead of the Fano triangle of ordinary octonions), was introduced. Different kind of rotations in the 
split octonionic space was considered. It was shown that in octonionic space active and passive transformations 
of coordinates are not equivalent. The group of passive coordinate transformations, which leave invariant the 

pseudonorms of split octonions, is , while active rotations are done by the direct product of the seven 

-boosts and fourteen -rotations. In classical limit these transformations give the standard 6-

parametrical Lorentz group. 
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