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Abstract

For a system of n interacting particles moving in the background c
single particle Hamiltonian admits a density of states, so does th
integrated density of states coincides with that of the free pe
Anderson model, we prove regularity properties of the integrated c

1. Introduction

Recently, models describing interacting quantum particles in a rc
3]). We consider # interacting particles moving in a “homogene

space B7 . A typical example of what we mean by a “homogeneo
potential. The goal of the present paper is twofold.

First, we prove that if the Hamiltonian of the single particle in f
density of states (IDS), then, so does the interacting h-particle Ha
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prove the claim for the noninteracting n-particle system and
noninteracting and interacting system is the same. These two ste

Anderson model in ]Rd.

Note that, in general, knowledge of the integrated density of si
counting functions of the finite volume restrictions of the random
it is @ major tool in the study of the spectrum. Therefore, the sec
finite volume normalized counting function which lead to a Wegn:
developed for the one-particle Hamiltonian.

1.1. The Interacting Multiparticle Model

The noninteracting n-particle Hamiltonian satisfies Hil==b+ 10,

kinetic energy of the 1 particles. As all the particles are in the sam

n
Vol ,xn]l=k§1L

Hence, the noninteracting f-particle Hamiltonian is a sum of or

particle potential Vl, we assume that

(H.1.a) (la’ljl+:=rna><{la’1JD} is locally square integrable a
bounded potential, that is, pl{v11_) 2 Di-A) and for all @ = 0, th

NI _g 1€ albg i+
(H.1.b) the operator +1 admits an integrated density of ste

restriction of 41 to a cube A{,L) centered at 0 of side-length,

N1(E):= lim 79 Tracef;
1(E) i i
Assumption (H.1.a) implies essential self-adjointness of —& + 11 on

Vi = W= WL (ML)l

O] ([t ) is infinitesimally -&-bounded, that is, (1.2) holc

IE'.”':I;
(i) (o

ext:h. is nonnegative locally square integrable.

The self-adjoint extensions of -4 +1/1 and -4 +lr"é'-'xt are again der

follows.

Classical models for which the IDS is known to exist include perio
operators (see, e.g., [5]).

In the definition of the density of states, we could also have co
conditions.
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The interacting n-particle Hamiltonian is of the form

HMi=-A+ L+
where
Li(xq,... ,xn)i=
‘ " ekiin
is a localized repulsive interaction potential generated by the partic

H2) . pfom is measurable nonnegative locally square int

The standard repulsive interaction in three-dimensional space is

some cases, due to screening, it must be replaced by the Yukawa's
Finally, we make one more assumption on both 1¥1 and l; we assur

(H:3) the operator I/ {#H [ - 1 is bounded.

Assumption (H.3) is satisfied in the case of the Coulomb and Yuki
self-adjoint on D(HE) € D(-5), hence IVFHE - i1 1< I A(-4 - i)

due to closed graph theorem and ||l#’|l!""I:—é.—.":I_1 < == for Coulomt

Theorem X.16].

2. The Integrated Density of States

We now compute the IDS for the n-particle model. Let Ay = A{0,L]
and write Af=4A; x--x Ay for the product of » copies of 4; . We

Hamiltonian #" to A% with Dirichlet boundary conditions by #f*. Cl
Hf is bounded from what follows with compact resolvent. Hence,

functions

Ny (E)1=¢0d Trace (1)
As usual, M, the IDS of #" is defined as the limit of &} (£} when {
states measure applied to a test function ¢ as the limit of L~

nonnegative measure. It is a classical result that the existence of

equivalent [5].

2.1. The IDS for the Noninteracting -Particle System

Recall that, by assumption (H.1.b), the single particle model H1
measure denoted, respectively, by &1 and ¥ .

Let ."—.-'If'l'-'l,_ be the restriction of ."-.-'EI'-' to ﬁf with Dirichlet boundary conc

Lemma 2.1. The IDS for the noninteracting h -particle Boltzmann r.
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NpilE) :=.r_”_>mm l,_nid Trace (1]_

exists and satisfies
Let us comment on this result. First, the convolution product in (2
are supported on half-axes of the form [z, +ea); this results from as

from what follows, one will need some estimate on the decay of

prove it); such estimates are known for some models (see, e.g., [¢

Proof. The operator HEI'-' is the sum of i commuting Hamiltonians

Hl:fl'-'l,_, its restriction to the cube ﬂf. As the sum decomposition

eigenvalues of Ht'l'-'l,_ are exactly the sum of i eigenvalues of +H1 rest
A

Trace (1), 1§, )) = (N1 * T

L
where H1(E]} is the eigenvalue counting function for +1 restricted

The normalized counting function and measure, Ni’— and l.fi’—, are def

1L

ML= My,
1,4

I"—:
Y1

The existence of the density of states of +1 then exactly says the
The convergence of MN{™wi™ - * vl to Np™wy™ - %wy is t

bicontinuous operation on distributions. This completes the proof o

Let us now say a word on the boundary conditions chosen to defin
volume limit of the normalized counting for Dirichlet eigenvalt
Hamiltonian has an IDS defined as the infinite-volume limit of the
does the noninteracting n-body Hamiltonian. Moreover, in the ce
Hamiltonian, they also coincide for the noninteracting r-body Har
then sees that the integrated densities of states for both the on
positive mixed boundary conditions also exist and coincide wit
boundary conditions.

2.2. Existence of the IDS for the Interacting r-Particle Syste

Let H{-‘ denote the restriction of 5 to the box ﬂf with Dirichlet bot
Theorem 2.2. Assume (H.1), (H.2), and (H.3) are satisfied. For any

1
Ln—d Trace [qe:-(.-'—a'f]l - @(Hlﬂ_

As the density of states measure of ~+" is defined by

. 1
J3@My= i — Trac
W=, N g nd

we immediately get the following corollary.
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Corollary 2.3. Assume (H.1), (H.2), and (H.3) are satisfied. The I
H exists and coincides with that of the noninteracting model Hil

N=Nni=.'\"1*'-"1*

Note that, in view of the remark concluding Section 2.1, we see th
H-body Hamiltonian is independent of the boundary conditions if th

In Corollary 2.3, we dealt with the Boltzmann statistic, that is, w
both the Fermi and the Bose statistics, that is, if one restricts t
functions. One defines the following:

(i)  for the Fermi statistics, the Fermi integrated density of s

Fyo lim 2L
fip,dN _.r_|_|>n:',m T Tran:ej

where h,.—l.-"_ZI:ﬁ%:I denotes n-fold antisymmetric tensor product o

(i)  for the Bose statistics, the Bose integrated density of ste

|
JanEi= lim 2 Trace

5 -
where (-E',.—,. .Lzliﬂ%]l denotes r-fold symmetric tensor product of i

Let us now discuss shortly the Bose and Fermi counting functio
Hamiltonian restricted to a finite cube) in the free case (i.e., whe

and let £1(L1£ E2(L1% - be the eigenvalue of the single particle |
three counting functions are then given by

#; (£1: = #{eigenvalues of HIi."_ o ."_EI:‘
= #{l bz, udn)  E 5 IL)+E L
#f{E]l » = #{eigenvalues of Hli."_ on Ap
= #1012, Jdpd i1 <dz< <y
#fl{Ej . = # {eigenvalues of Hl:lll-':."_ an é‘;
=#{U1dz. . dp) 1Sz s 5]

Hence,
n!#f(E}ﬁ#;_(E]liﬂ!

Uniformly in £, the eigenvalues (£ ;{L}) are lower bounded by,

Jzl

L
then, for ¥=1,... .7, one has E_}-klz."_:l ZE+Cnsothat jp 2N{E+Cn)

o= #fI{E}— #fI{E]I

HEizE 2]
= #Udz, el
T B HE

< 7y aln=1)

Thus, dividing (2.12) and (2.13) by " and taking the limit L — +a
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states are equal to the Boltzmann one. Theorem 2.2 then gives the
Corollary 2.4. Assume (H.1), (H.2), and (H.3) are satisfied. One he

Proof. We take some 7 = nd /2 and specify the appropriate choice

exists = 0 such that

~e< =< min{inf {inflotHg, 1 olH)

Lety=yi1l/21begiven by (1.2) fora=1/2.Fixhg=J{+2y+1,

By (2.14), we only need to prove (2.6) for i e CD"“I:]R]I supported in

analytic extension of the function x i (3 + Ag)¥ix) e CO(R), that is

(i) @esi{zer:| dz|c1],
(i) for any k& e M, the family of functions [x = (8 / 8Z)ix +iv)

The functional calculus based on the Helffer-Sjéstrand formula imp

i B -
OHP) - @t )= == [ SE@IHP +ho) (P - 2
In the following, we apply an idea, which has already been used ii

resolvent equality, the integrand in (2.15) is written as

(Hp +h) THp -2 - (HE, +ic

= (g, + Al TP - 27 -

H{H +hg) 7 - (HE, +hol

= -1y, +ha TR, - Z

[r}
f-g-1
_,Ell:HEF’L +4Ag) (Vo
Estimating the trace of (2.16), we choose £ = 00 and write

VP =VP Lypge, + 17

and note that lr’af'-' . l{ILf,-” Ty is bounded by ||lz’ff'-' . l{I ArT <. A

n n
suppvy  Lyp e B U {06 xn)
=y

As, by assumption (H.2), ¥ tends to O at infinity, (2.18) implies t
that

HiLl WP = e naf)s Cn

where u( -1 denotes the Lebesgue measure. Using decomposition (.
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-1
|Trace I{.-'—.-'E-'I'*JI,_ +AD)_¢(HE-'IT'JL -z] I:l/a!"-'jl

£
£ ——= Trace | (K"
Sz o,

-Trace | (Hli,_

+hp) 7 |+

+.li||:|jl_ql_ul’,pb£.

-1
H +ﬁ. 94
S Izui o I lzui

' ”I:HE"I-",L +"i":':'_ Lavp exmarls

where ||-||g—¢ denotes the gth Schatten class norm (see [8]) and

cyclicity of the trace yields

|Trace

HE, +ha) T R ) Hp - 27

< Trace | (Hp +hol ' (Hg, +ho) "7V,

< IHP + ﬁn:l“’I:Hg ,

+ﬁ.;,]|"l||- Trace | (HEI?LH.

-1
SRRl |( s +h)l Hﬁfﬁi+ﬁni L
+C3—Z|"'1H€J¢+"U3' ":r
We are now left with estimating ||I:Hﬁ'|'-'lf_+ﬁ.|;,]|_1||g-¢ and |||:HE|'-'I,_ +ﬂ.,;,]|_j

on nd . Therefore, we compute

(e

|:"|-':|.'_+"i'|:|:|_

{W' [}E}'ﬁ'ﬂL"T {lll: +"a'I

'|||:_ﬂﬂ£ 1

where —ﬁ.ﬂn is the Dirichlet Laplacian on 4% . We use the decom

infinitesimal —A-boundedness on (

As hp = 2¢¥ + 1, one has

HE, Hhoz-byp+ (1]

Thus, the operator Hlf?.f_

' +1_, [4, Theorem X.18] and the

|{¢J“‘f xt:' Fﬁ} |{ {Fﬁj_ﬁ'ﬂi

1
E:nct:I +hp 2 E(_"&'ﬁf B

+4p is invertible and

-1
I:Hli."_-l-'li":':l 52(—&113

Let I:u_}:I and (¢ ;) ;, respectively, denote the eigenvalues and eiger

*
Jruns over (M ]|) For ¢ € M such that 27 > nd, we compute
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The last estimate is a direct computation using the explicit form of

By [6, Lemma 2.2], we know that, for ¢ € ¥ such that 27 = nd,

subset A" ;ﬂfj one has

_ -1/2 027 <
li=tap+ho) 7 TLalg <

Choosing &"={| el = E}nﬂf and taking (2.19) into account, thi

that there exists &, depending only on ¢ (and the bound in assumpt
-1

Trace | (H{-‘ +ﬁ..;.]|_¢(H£'-' -z T - ':HI:"F,L +

= C(Lzln'_nd + L,’_nd—':ﬂ'.-"zﬁ‘:' + _E

|5z 1%z |2

By using this inequality in (2.15), we get (2.6) as & being almo:

approaches the real line. Thus, we completed the proof of Theoren

3. Application to the Interacting Multiparticle Andel

In the interacting multiparticle Anderson model, we consider a ran
particle Anderson potential is of the form

Vi, x)= = A
jEZd
with a family @ ;! & =R of random variables on (52, ), This one-

“background” potential

]
e, 5, xpd= 2 b
f=1

and the interacting r-particle Hamiltonian reads as

HMwh=-A+ e+

For the Anderson model, it is known under rather general assu
counting function defined in assumption (H.1.b) converges al
nondecreasing function of £. Its discontinuity set is countable. By |

the normalized counting function defined in assumption (H.1.b) tt
now apply the results of the last section and get a P-almost sur¢

noninteracting and interacting h-particle system. Note that

(i,j,... . J) e 2" leave #™{w) invariant. Hence, for an application of
the proof of existence and P-almost sure constancy of #, there are
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One of the interesting properties of the integrated density of st
important role in the theory of localization for random one-partic
play through a Wegner estimate, that is, an estimate of the type

B(Trace l]En;Enﬂ]':HfT”
On the other hand, Corollary 2.3 directly relates the regularity of t

of the single particle Hamiltonian. The regularity of the IDS of t
interest recently (see, e.g., [11, 12]).

We now prove a Wegner estimate; for convenience, we assume the

(H.A.2) The single-site potential v is nonnegative, compactly

such that w{xiz ¢ for xe [<{1/21,1/2]%.

For the proof of a Wegner estimate in the interacting h-particle
probabilistic hypothesis like in [13]:

(HA.3) {w;: & %Rjjezd is a family of bounded random varic

When u ; denotes the conditional probability measure for w ; at

variables I{m,.-]l,-#jj that is, for all 4 K],

LA =Pl e A | lw

then, a Wegner estimate a la [13] uses the quantity

s} i= sup B{sup u 4
_}'EZGI FeR
and is stated as follows.

Theorem 3.1. Let us assume (H.A.2) and (H.A.3), and let A B!

Hfflimjl be the restriction of ™) to A with Dirichlet boundary conc

Cwe ' B —=[0,]
Epr CeiEnl

such that for all iy = 1

B(Trace l]En,Euﬂ?]':HfT:':' AT

In order to prove Theorem 3.1, we prove two preparatory lemmas.

Lemma 3.2. Let & ;]R""j be an open bounded cube, then the res
Dirichlet or Neumann boundary conditions define self-adjoint opere

Proof. {7 is infinitesimally -4 form bounded according to [4, Theort

|8, 1y 1S £ I )5+

is true for ¥ e Hlim'—'djj in particular (3.9) is true for ¥ e D{-fp )=

http://www. hindawi. com/ journals/amp/2009/679827. html 2009-9-8
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representation theorem a self-adjoint operator ."—.-'f:"-'J_fi =—hp + lff:"-' [a
4

minimax principle and (3.9), we see that H;"-'ﬂ has compact resolve

CFVPEY S T 15+ cellF)?
uses the extension operator & | H1(4) %H&(ﬂ’) to A" ={xemnd;
||Eﬂ-‘-I-’||H1£ C‘j_ll"I'rIIHj_ and ||Eﬂ-‘-I-’||L2£ Czll"I'rllli,_z,' see [14, Satz 5.6 and F

(3.9), hence by L-”f!"-' # 0 and the above properties of £ we get for T

O =7, VS (Ep T VPER T S |7 (Ex 1)
= E"':-'—':ﬂ"{'r:'"i,l"' (be - E:'"-'—':ﬂ"'l'ruizﬁ o f v
which is (3.10). With (3.10) at hand, the proof for Neumann bounc

Lemma 3.3. Let one assumes (H.A.2) and (H.A.3), and let & cE"

Aji=An Al 1)= @ (here, Alj, L1={|x-jy |£1/2, 1£ksn}), the
B Vg, £ o (R < -

Proof. For every j & zd, we define Uyt ]R""j =1 by

i
Uy, xg)i= 2ou
/ i

and set & ;= ()2 . Fix @ component of j, say ji, then we get a de

Ve, 5, .. Xp) =w U (%1, %)

of the random potential |™{t2), and the same is true for HEI:G_J:I:

Hiwl=-dp+ 5 ol +opu g Ly
teg?
271

By the covering condition &1 # 1 on the single site-pc
Y g [—1;2,1;’2]d 9 P

ot

f= gu ;,, where qlxl=Fix) ,u’uj-llix]l almost everywhere, so |7 [I= &~

Egtn -1 n
—E-1 = —
'[En dE{p, BH-E—in) TpyvE 7t

for every self-adjoint ~, see [13], (3.9). The equalities and estimat
into a form, where the results of spectral averaging, [11, Section 3

E(f, l]En,En-H?]'iH;T:'f} = E'.[R':"'-uji'imh:'{g’ U5 g8,
4 ot
ot FEI_[RG..LJ'J'll:m_}'lj .[ED dES{[

a
< S IFI%sin) .
[
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Proof. By (H.A.2) and (H.A.3), we get a P-almost sure bound

restrictions HE':':U:' and Hf! N(m]l of #"™{ru) to a bounded open cut

define self-adjoint operators with compact resolvent P-almost sur

A=A, 1) A Then AT =A™ Uy 54 has Lebesgue measure O, si

—hp 2 =dg i Z b g s p

So with Hi defined in Lemma 3.2, we get P-almost sure:
4 J.l

Hw) 2 HE =@ HIP
.I!I!I.I: :I L jeJ £

By spectral calculus,

Trace (e, £ 4]t Ew))) £ ef0t? Traca

Let (@k(m”keﬂ be the orthogonal basis of L2(A) consisting out of .
Mlw) ={k e Mt lw) elEg, Eg+1]1T, then

[ _
Trace (hz,, g4+, 0))e A - kE%{

=
e M

=
e M

=Trace

where the last estimate follows from Jensen's inequality. Let (;ﬁkjj:l

, A . )
eigenvectors of H.-',ﬂjJN to the eigenvalues £, ;, then

Trace(l HOw) e~ ) = .
(heg,£q+n 1R )] ! k%ﬂ jgj{‘ﬁﬁm

As §y 5 € ."_Eliﬂjjl and | ; I= 1, Lemma 3.3 implies

Bioy 5 Ve £q+nHL010
As If* is nonnegative, the eigenvalues & ; of HfﬂjJN=—&ﬂjJN

eigenvalues of —ﬂﬂjJN.These are known explicitly, see [15, page z

T % e thjs Card I:_.'":I|:
el jeld

If the side-length of & is bigger than 1, then Card(7) < znd | A, s
inequalities (3.20) to (3.24), it implies

L
B(Tracelys, = 4n]WH 0= gEotr L,

Under the assumptions (H.A.2) and (H.A.3), we have

http://www. hindawi. com/ journals/amp/2009/679827. html 2009-9-8
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NIEY = BINME, Jg) =B

hence by the Wegner estimate we can deduce regularity proper

If,uj.-]lezd via
O=ME +77) = NETE Cyeld
References
1. W. Kirsch, “A Wegner estimate for multi-particle random Hi

10.

11.

12.

13.

14.

15.

Analiza, Geometrii, vol. 4, no. 1, pp. 121 -127, 2008.

V. Chulaevsky, “Wegner-Stollmann type estimates for somi
Mathematical Physics, vol. 447 of Contemporary Mathematic
Providence, RI, USA, 2007.

M. Aizenman and S. Warzel, “Localization bounds for multij
http://arxiv.org/abs/0809.3436.

M. Reed and B. Simon, Methods of Modern Mathematical Ph)
Academic Press, New York, NY USA, 1975.

L. Pastur and A. Figotin, Spectra of Random and Almost-Per
Mathematischen Wissenschaften, Springer, Berlin, Germany

F. Klopp and L. Pastur, “Lifshitz tails for random Schrodinge
potential,” Communications in Mathematical Physics, vol. 2

F. Klopp, “Internal Lifshits tails for random perturbations of
Mathematical Journal, vol. 98, no. 2, pp. 335-396, 1999.

B. Simon, Trace Ideals and Their Applications, vol. 120 of M.
Mathematical Society, Providence, RI, USA, 2nd edition, 20C

R. Carmona and J. Lacroix, Spectral Theory of Random Schr
Birkhduser, Boston, Mass, USA, 1990.

P. Stollmann, Caught by Disorder: Bound States in Random
Birkhduser, Boston, Mass, USA, 2001.

J.-M. Combes, P. D. Hislop, and F. Klopp, “Local and global
Advances in Differential Equations and Mathematical Physics
Contemporary Mathematics, pp. 61 - 74, American Matheme

G. Stolz, “Strategies in localization proofs for one-dimensio
of the Indian Academy of Sciences. Mathematical Sciences,

J.-M. Combes, P. D. Hislop, and F. Klopp, “An optimal Wegi
continuity of the integrated density of states for random Sct
vol. 140, no. 3, pp. 469 - 498, 2007.

J. Wloka, Partielle Differentialgleichungen, B. G. Teubner, St

M. Reed and B. Simon, Methods of Modern Mathematical Ph)
New York, NY, USA, 1978.

http://www. hindawi. com/ journals/amp/2009/679827. html 2009-9-8



The Integrated Density of States for an Interacting Multiparticle... Uif%, 13/13

Copyright © 2009 Hindawi Publishing Corporation. All rights reserv

http://www. hindawi. com/ journals/amp/2009/679827. html 2009-9-8



