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Abstract

In this paper, we apply to (almost) all the “named” polynomials
three-term recursion relations, the machinery developed in previot
at least one additional recursion relation involving a shift in some
these polynomials characterized by special values of their paramet
of their zeros—generally given by simple expressions in terms of
findings generally are applicable for values of the Askey polynomie
orthogonality relations hold. Most of these results are not (yet) reg

1. Introduction

Recently Diophantine findings and conjectures concerning the
correspondingly the zeros of the polynomials associated with their
the behavior of certain isochronous many-body problems of Toda
(for a review of these and other analogous results, see [3, Appe
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theoretical framework was then developed [4 - 6], involving polyi
hence being, at least for appropriate ranges of the parameters
referred to as “Favard theorem,” on the basis of [7]; however
“spectral theorem for orthogonal polynomials” [8]). Specific ¢
coefficients, featuring a parameter v, of these recursion relation
polynomials also satisfy a second three-term recursion relation
second recursion relation, Diophantine results of the kind indicatec
make this paper essentially self-contained, these developments ai
with the corresponding proofs relegated to an appendix to avoid
apply, in Section 3, this theoretical machinery to the “named”
the basic three-term recursion relation they satisfy: this entails th
be done in more than one way, especially for the named polynol
identification of additional recursion relations satisfied by (mosi
(especially after they have been discovered) could also be obtain
relations of these polynomials with hypergeometric functions: we
cases) in the standard compilations [9 - 13], where they in our op
our machinery yields factorizations of certain of these polynomial
zeros, as well as factorizations relating some of these polynomial:
most of these results seem new and deserving to be eventually re
generally require that the parameters of the named polynomials ¢
the orthogonality property. To clarify this restriction let us remark
which might be considered the prototype of formulas reported
scheme—reads as follows:

n
L,';‘”:'(xj=|:_§:: L on=l

where .L,'%,"I'I:X]I is the standard (generalized) Laguerre polynomial of

_[;Ddx x@expi-a)e 00 L0 -

it is, however, generally required that Fea > -1. This formula, (1.1
of the standard compilations reporting results for classical orthogol
book by Magnus and Oberhettinger [14] or [11, Equation 8.973.4
neat generalization of this formula, reading

f-rl

L5000 = 1y I ey (),

which qualifies as well as the prototype of formulas reported below
(Note, incidentally, that this formula can be inserted without d
generalized Laguerre polynomials, (1.1b), reproducing the stand:
gets indeed neatly compensated by the term x'" appearing in
property—and the analogous version for Jacobi polynomials—
polynomials; e.g., a referee of this paper wrote “Although I ha\
written it down nor saw it stated explicitly. It is clear from readi
(1.1c) and the more general case of Jacobi polynomials.” ) Most ¢
the named polynomials of the Askey scheme that are reported bel
they do not appear in the standard compilations where we sugge
their neatness and their Diophantine character. They could of cou
we followed to identify and prove them (it is indeed generally the
they have been discovered, are easily proven via several differen
the results reported below have been obtained by a rather s
polynomials of the Askey scheme, we do not claim that the results
these polynomials. And let us also note that, as it is generally
polynomials [9 - 13], we have treated separately each of the differ
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though “in principle” it would be sufficient to only treat the mo:
encompasses all the other classes via appropriate assignments
features. Section 4 mentions tersely possible future developments.

2. Preliminaries and Notation

In this section we report tersely the key points of our approach, m
indicated above—and also to establish its notation: previously k
proofs, except for an extension of these findings whose proof is rel

Hereafter we consider classes of monic polynomials p,';,”:'(le, of ¢

parameter ¥, defined by the three-term recursion relation:

pir G = (x+al e -

with the “initial” assignments

pllog=0,  pivh

clearly entailing

,D:EUI'I:X]I =x+aé”:'1 pé”:'(xj= {x+.
and so on. (In some cases the left-hand side of the first (2.1b) mr

account of possible indeterminacies of bé”:'.)

Notation. Here and hereafter the index n is a nonnegative integ:

make little sense for &1 =0, requiring a—generally quite obvious—sj

this index 1 and of the parameter v. They might—indeed they oft
(see below); but this parameter v plays a crucial role, indee
identification of special values of it (generally simply related to the

Let us recall that the theorem which guarantees that these polyr
relation (2.1), are orthogonal (with a positive definite, albeit a ¢

coefficients a,'%,"’:' and b,';.”:' be real and that the latter be negative, &,
2.1. Additional Recursion Relation

Proposition 2.1. If the quantities H,';”:' and ') satisfy the nonlinea
(el _ g lr=ir g vl _ qlv=10 v orglv-10_
(A2 = Anoy MAR - AT+t = A7 -

with the boundary condition

el _
Ay =0
(where, without significant loss of generality, this constant is set

value A : see [5, Equation (4a)]; and we also replaced, for notatic

[57 with w'¥? ), and if the coefficients a*} and by are defined in t

of0-Al- A
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b o alv) - alv-thpa ) -

then the polynomials ,D,'%"":'I:xj identified by the recursion relation (2.
(involving a shift both in the order i of the polynomials and in the

pi e =p )+l
with

gfgu)=’4£u)_’4£u—

This proposition corresponds to [5, Proposition 2.3]. (As suggestec
a parameter—albeit of a very special type and different from that
paper by Dickinson et al. [17].)

Alternative conditions sufficient for the validity of Proposition 2.1 a

and g,'%,”:' read as follows (see [5, Appendix B]):

a;;l‘l"':' - a;;lll"'_j-:' = g.'IE.IL-;-:Il ,

bV tal) - b gl

with

b;;lll.-":' _ bnl-"'

frd o
a5 E;I;.U}—E,EL:

and the “initial” condition
gf“:'=aé”:'—aé”'

entailing via (2.5c) (with ir=1)

e 2 R MR ¢

and via (2.5a) (with n=0)
gé”:'= o,

Proposition 2.2. Assume that the class of (monic, orthogonal) p

satisfies Proposition 2.1, hence that they also obey the ( “second
the relations:

R0 = De— xSV a0+,

xl.'é,lJ”:' = —[al,'%‘i‘llhg

in addition to

pR00 = e 2R IV 12 000) -

x,ng”:'=—[a£‘i‘12:'+g,'%“:' 4
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C,';l,u:' - 5;%1112} +§'.£.-u}g|£

as well as

D) = b= 63 3300 + 0 p |
KBV = [al0=3) 4 g0) 4 g

i) = b3 4 g V3D 4 g v 1)
aiV! = glVighvTLight

These findings correspond to [6, Proposition 1].
2.2. Factorizations

In the following we introduce a second parameter L, but for nota
dependence of the various quantities on this parameter.

Proposition 2.3. If the (monic, orthogonal) polynomials ,D,'%,”:'I:le a
coefficients b,';.u:' satisfy the relation

pirHd g,
entailing that for v = n +Li, the recursion relation (2.1a) reads

Pl = (x+alm e

then there holds the factorization

pimH ) = ﬁ%ﬂ(x}p,‘%.,mﬂ}(XL

with the “complementary” polynomials ﬁgj_m:'(xj (of course of

recursion relation analogous (but not identical) to (2.1):

B0 = (e gl ™ ) 4

B™eg=0,  BE™

entailing
ﬁ'zl'm:'(x]l = x+alm
ﬁl:z_mjl:}{:l = (x+a,';j”1"11“:'j(x+a,';.,m‘h“:'j +bf';’;'
with
e %{—a,';nm*?“:' - af'g_’”fl'“:' + [(almH)
and so on.

This is a slight generalization (proven below, in Appendix A) of [

http://www. hindawi. com/ journals/amp/2009/268134. html 2009-9-8



Additional Recursion Relations, Factorizations, and Diophantine Pro... Uif%, 6/33

complementary polynomials b'g-.._m:'(x]u being defined by three-terr

orthogonal families, hence they should have to be eventually inve:
them the kind of findings reported in this paper.

The following two results are immediate consequences of Propositir

Corollary 2.4. If (2.9) holds—entailing (2.10) and (2.11) with (2.1.

'D;I_n;"'-" -1 W}E_afg"lilﬂﬂlj

and the polynomial ,DI.'%”_EW:'I:X]I has the two zeros xl,';ij'z (see (2.12

B2 ) -

The first of these results is a trivial consequence of (2.10); the

moreover, that from the factorization formula (2.11), one can lik

zeros of ,D,'%”"H'“:'I:xj, by evaluation from (2.12) ,'”:I":S""'"":'(x]l and ;

solvability of algebraic equations of degrees 3 and 4.

These findings often have a Diophantine connotation, due to the n

terms of integers.

Corollary 2.5. If (2.9) holds—entailing (2.10) and (2.11) with (2

satisfy the properties

i) =l ENE), b
then clearly
B, ) = p T
entailing that the factorization (2.11) takes the neat form

P p) = p AT Bip T

o=
Note that—for future convenience, see below—one has emphasi
depend on additional parameters (indicated with the vector variat
of course be independent of i, but they might depend on 11 ).

The following remark is relevant when both Propositions 2.1 and 2.

Remark 2.6. As implied by (2.3b), the condition (2.9) can be enfor
(Wi g lu=14u) _
w = AT A,
entailing that the nonlinear recursion relation (2.3a) reads
il _ g e=1hrg el - qiv=13, q(v-1
[Ap 2y — A Ay - Ap 7+ AT

- AR - ARTIAR Y - Al

Corollaries 2.4 and 2.5 and Remark 2.6 are analogous to [5, Coroll
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2.3. Complete Factorizations and Diophantine Findings

The Diophantine character of the findings reported below is due
zeros in terms of integers (see in particular the examples in Sectio
Proposition 2.7. If the (monic, orthogonal) polynomials ,Dl.';',”:'(x]l are
with coefficients a,';',”:' and .b,.';..”:' satisfying the requirements sufficie

(namely (2.3), with (2.2) and (2.9), or just with (2.18)), then

P00 = 1T [x-xfd

m=1
with the expressions (2.6b) of the zeros xl.';..,l”":' and the standard c

when its lower limit exceeds its upper limit. Note that these h zert
particular,

Py =1,  pRIg = x-x LR, ploh

and so on.
These findings correspond to [6, Proposition 2.2 (first part)].

The following results are immediate consequences of Proposition 2

Corollary 2.8. If Proposition 2.7 holds, then also the polynom

,D,';l,nﬂ:'(}{:l , see (2.19)) can be written in the following completely f

n=1
P00 = a1 TT

T
PRI = D= P e =xf0]

Analogously, complete factorizations can clearly be written for the

last part of Corollary 2.4.

And of course the factorization (2.11) together with (2.19a) en

polynomial p&™ ) (x) with m = 1, .. ,n features the m zeros xé:l“!""
pimHI LR 20, 121,

Proposition 2.9. Assume that, for the class of polynomials »'3’;;.-”':5

moreover that, for some value of the parameter i (and of cou

coefficients ¢ 2 ) vanish (see (2.7a) and (2.7¢)),

C{I;,lzn-hu:l = bfgz_qﬂ"_zj +g£2nﬂ"'}

then the polynomials p,'%z""""“:'(x]l factorize as follows:
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P20 = 1T [l
m=1
entailing
piI0=1,  pfEMIGg=x- xR IR, plan

and so on.

Likewise, if for all nonnegative integer values of i, the following tw

d,ES”J’”:' - bl'lgllS_.';-l-y—S} +G£3nwﬁ'ﬁ’1ﬂ_2} +g£3nﬂf-1

eI =0, thet i, o =0 ar gl3T

then the polynomials p,'%S”"'“:'(xj factorize as follows:

I
,D,I%SHW}(X:I = mH=1[X - x’g_?

entailing

P =1,  pPRIpg=x-x[33R0, plEw

and so on.

Here of course the it (rt -independent!) zeros x,'%.,zizm‘h“:' , respecti
(2.8b).

These findings correspond to [6, Proposition 2].

3. Results for the Polynomials of the Askey Scheme

In this section, we apply to the polynomials of the Askey scheme [
class of polynomials (including the classical polynomials) may t
functions, Rodriguez-type formulas, their connections with hyperc
our machinery, as outlined in the preceding section, we introduc
satisfy:

Prt1linl=[x+anlnilonlxinl-
with the “initial” assignments

p-qlxnl=0,  pplx
clearly entailing

prlaml=x+aplnl,  palnl=[o+:
and so on. Here the components of the vector & denote the a

polynomials.

Let us emphasize that in this manner we introduced the monic (o
below we generally also report the relation of this version to the m

To apply our machinery we must identify, among the parame
parameter ¥ playing a special role in our approach. This can be ¢
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class of polynomials, see below). Once this identification (i.e., the

relations (3.1) coincide with the relations (2.1) via the self-evident
Pl =palaniv)),  af¥l=aplnl

Before proceeding with the report of our results, let us also empt
feature symmetries regarding the dependence on their parameter:
of some of them—obviously all the properties of these polynor
symmetry properties; but it would be a waste of space to report
duplications are hereafter omitted (except that sometimes results
trivially related via such symmetries: when this happens this fact
notation of [9]—up to obvious changes made whenever necessar
notation. When we obtain a result that we deem interesting but is
we identify it as new (although given the very large literature on
such a result has not been already published; indeed we will be gt
is indeed the case and will let us know). And let us reiterate that
such results, this investigation cannot be considered “exhaustive
via assignments of the v-dependence #iv] different from those con:

3.1. Wilson

The monic Wilson polynomials (see [9], and note the notational re
with @, &, y,&)

Dpix;a, B, v, 8= ol
are defined by the three-term recursion relations (3.1) with

aniﬂj=az_ﬁn_EnJ bnl:l_l

where
Foo m+a+fin+o+riin+o4+
e (2n-1+a+ai(2n
= nr-1+8+piin-1+5+
Crn=

(Zn-24+a+F)(2n -
og=H+y+8, o= Sy + 55+

The standard version of these polynomials reads (see [9]):

Wolxi, B, v, 8= (-1 (h- L+a+8+

Let us also recall that these polynomials pnix; a5, v, &) are inva
o, 8,v, 8.

As for the identification of the parameter ¥ (see (3.2)), two possibil

3.1.1. First Assignment

http://www. hindawi. com/ journals/amp/2009/268134. html 2009-9-8
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With this assignment, one can set, consistently with our previous t

A,'%”:' —[B(2n-2-v+o)] tn{4- 50+

+[-10+5¢
+(8 - 4T+
i) = _y2

implying, via (2.2), (2.3), that the polynomials ,D,'%"":'(x]l defined by

with the normalized Wilson polynomials (3.3):

PV = Pl v, B,
Hence, with this identification, Proposition 2.1 becomes applicat
Wilson polynomials satisfy the second recursion relation (2.4a) witl

(1 _ Al - 14+8+vin-1+54
e "= (2n-2-v+FI(2n-

Note that this finding is obtained without requiring any limitatio
Drlxia, By, )

It is, moreover, plain that with the assignment

v=rn-145, namely, a-
the factorizations implied by Proposition 2.3, and the properties
L =8~ 1.These are new findings. As for the additional findings en
3.1.3. And Proposition 2.7 becomes as well applicable, entailing (n

Drlxy-n+1-5.6,p,8)= lﬂll[:

m=
h

while Corollary 2.8 entails even more general properties, such as (

Dal-t- 1+87 -m+1-B,6,v,8]=0,

Remark 3.1. A look at the formulas (3.3) suggests other possibl
such asv=h- 2+, namely, 2= 2 -n-=. However, these assignn

because for this to happen, it is not sufficient that the numerator

required that the denominator in that expression never vanish. In
the parameter ¥ in terms of i that satisfy these requirements.

3.1.2. Second Assignment

With this assignment, one can set, consistently with our previous t
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AL) = [B(4n-3-2v+ 2y +25)] In{3- 4y - 45+ By
S[11-12y- 125 +12
+[3 4+ 2y - Py - 25):/‘.'2

2
wi__¥"
b = .
4

implying, via (2.2), (2.3), that the polynomials ,D,'%"":'(x]l defined by
with the normalized Wilson polynomials (3.3):

iKY =pnlxi -5, =5

Hence, with this identification, Proposition 2.1 becomes applicat
Wilson polynomials satisfy the second recursion relation (2.4a) witl

(L _ aln-1l+v+8)12n-1-v+.
9 T Tan_3-ov+ oy +2e)an.

Note that this assignment entails now the (single) restriction

polynomials gplx;a, &, ¥, &0

It is, moreover, plain that with the assignments

v=n-= her1|:en:'=—£+l
! 2 4
1 n
v=n-2+25, =&- =, d=-=+
7meT 3 2
respectively,
1 n
v=n-1+25, =&+ =, d=-=+
1eery 2

the factorizations implied by Proposition 2.3 and the properties
w=-1/2, i=-2+24, respectively, i=-1+24. These are new f

Corollary 2.5, they are reported in Section 3.1.3. And Propositi
Diophantine factorizations

oh 1 n 3 o
ﬂnl{XJ-E+ZJ-E+Z;!r’J5}|=mﬂ=
. on h o3 1
Pofiig+1-b,-5+5-8,6-5.8)=
respectively,
o1 H 1
,Dnlix_,—§+§—5_,—§+1—5_,5+§_,5:|=

(A referee pointed out that (3.17a) is not new, as one can eval

which is indeed the case in (3.17a); and, moreover, that the two
left-hand sides are identical as a consequence of the symm
transformation & =&+ 1/2.)

And Corollary 2.8 entails even more general properties, such as (n
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2%-1% m 1 m 3
prl - 4 j"_?J’Z’_?JFZ’?‘E]'DJ
-2+25.° m m 3 1
Al z ]‘_E 1-b-F+g-08-3

respectively,

2
PN i k=l PR

Moreover, with the assignments

v=2h-2+25 d=-h+1-4,

respectively,

y=>2n-1+28, a=—n+%—5

Proposition 2.9 becomes applicable, entailing (new findings) the Di

Palx;-n+ 1—5,—n+§—5ﬁ15]=

o

respectively,

p(x -n+ g —5 —m+1l- 5}*15]
o

obviously implying the relation

Palxi-n+1-8, n+——5 v, &)= pplxi-

3.1.3. Factorizations

The following new relations among monic Wilson polynomials are ii

Drlx;-m+1-8.6,v.4)
=Pn—mbim+8,v, 1= 8,800 0x —m +

1

m m 3
pn(x;—3+1—51 g 515—515]
=pn_m|IXj% ;+S, +8,1-85,-5+= :lpm

Note that the polynomials appearing as second factors in the |
factorizable, see (3.10) and (3.17b) (we will not repeat this remar}

3.2. Racah

The monic Racah polynomials (see [9])

Dalx;a,b,y,0)=pal
are defined by the three-term recursion relations (3.1) with

http://www. hindawi. com/ journals/amp/2009/268134. html 2009-9-8
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gl =An+Cn,  baln)
where

m+l+alin+1l+a0+50n+1
2o+ l1+a+502n+

An =

_nln+o+f-viin+a
BT i Zn+e+8i2n+ 1

ol

The standard version of these polynomials reads (see [9])

_ m+a+8+1)

4+ L5+ 5+ 1040
Note, however, that in the following we do not require the para
restrictions & =-#, §+&=-M, or ¥ = =M, with & a positive integer a

Rolxia,B,v,8)

for the standard Racah polynomials [9].
Let us recall that these polynomials are invariant under various res

Dalra, By, 8) =palxio, 8,8+
=palx G+d,0-
=pplx v o +5-

Let us now identify the parameter v as follows (see (3.2)):

@==V.

With this assignment, one can set, consistently with our previous t

ALY S [Bt2n- v+ 8] n{B(2 + 3y + 38) - [2
+[4+6(y +&)+ 37
+(—v + 80 +2n7

Wi oy = 1) +y
implying, via (2.2), (2.3), that the polynomials ,D,'%"":'(x]l defined by

with the normalized Racah polynomials (3.22):

o) = prlx; —v. 8
Hence, with this identification, Proposition 2.1 becomes applicat
Racah polynomials satisfy the second recursion relation (2.4a) witt

g':”:' __ aln+ 51N + 5+
" (2n-v+5020+

Note that this finding is obtained without requiring any limitatio
Dolxia,B,y,4)

It is, moreover, plain that with the assignments

v=r, hencedogs=
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v=n-4, henceao=

respectively,

v=n+5-v, hencedg=
the factorizations implied by Proposition 2.3 and the properties
L=0, u=-34, respectively, Li=§-v. These are new findings. As fi

they are reported in Section 3.2.1. And Proposition 2.7 become
Diophantine factorizations

DRl —n, By, &)= lﬂ_[ [x-(m-

=1

pnlx;-n+8,8,y,8) = 11 [x- {5

m=1

respectively,

Palx;-n-G+y,8,y,8]= lﬂ_[ [x-(m-
m=1

And Corollary 2.8 entails even more general properties, such as (n

Dalle- 1)+ y +87, -m,5,v,8]1=0, f

Dpllé+y)id-&- 1) -m+8,6,v,48]=0,

respectively,

Palif—1+8-yl4+5+8),-m-F+y,8,v,8]:
3.2.1. Factorizations

The following new relations among Racah polynomials are implied

DRl -, 5,-1, 1) = D (s 1,5, - 1, 11D

Prlxi—m+8,8,-8,8)=pn_plm - 8,28 +5,4,-4)p

Dali—m-B+y, B¢, c—-¥)
=D m+B-y4o,-F+2y -y, c- VDRV

Dl o, =1, v, 80 = Dl o, m, &, ¥ 10
Paloo,—m-a+n,n8)=pa_mix,nmn+d-o,0loy

3.3. Continuous Dual Hahn (CDH)

In this section (some results of which were already reported in
(CDH) polynomials pnix;a,5, %) (see [9], and note the notational

With GJ'B_I !’II)I
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Dl a8, y) = Dalx
defined by the three-term recursion relations (3.1) with

EM s, =g (n+a+Hn+o+y

balnl =-nin-1+a+8lin-1+¢

The standard version of these polynomials reads (see [9])

Spi a8y = (=100
Let us recall that these polynomials ponix; @, 5, ¥ are invariant unde

Let us now proceed and provide two identifications of the parametz

3.3.1. First Assignment

With this assignment, one can set, consistently with our previous t
Alv) o o3
A -n[—g+£+y—£y+fﬁ+y— v+

il = _y2,

implying, via (2.2), (2.3), that the polynomials p,'%”:'(le defined by
with the normalized CDH polynomials (3.32):

2N = prl; v 4
Hence, with this identification, Proposition 2.1 becomes applicable
polynomials satisfy the second recursion relation (2.4a) with

gl.';,'*’:'=n|:n— 1+£4
Note that this finding is obtained without requiring any limitati
Dalxia B,y

It is, moreover, plain that with the assignment

v=m-1+5 hencea=
the factorizations implied by Proposition 2.3 and the properties
t=-1+f. These are new findings. As for the additional finding
Section 3.3.3. And Proposition 2.7 becomes as well applicable, enti

DRl -n+1-8,5,v]= ln'I [x

=1

And Corollary 2.8 entails even more general properties, such as (n

pal-tt- 1487 -m+1-8,8,y]1=0, .
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Likewise, with the assignment

v=2n+p, a=-2n-§

Proposition 2.9 becomes applicable, entailing (new finding) the Dio

Palx;-2n - 5,8, %:I - T [x+

=1

3.3.2. Second Assignment

ma| =
—
-

1
B=-=V+0, =-
- &

where ¢ is an a priori arbitrary parameter.

With this assignment, one can set, consistently with our previous t

Ag“}=n[—%+§y+gc—c2— 2yc+(—§+y+c}|n

(i _Lq_
) 4(1 e+

implying, via (2.2), (2.3), that the polynomials ,D,I;,U:'I:XII defined by
with the normalized CDH polynomials (3.32):

kM) =palxic- 5 -

Hence, with this identification, Proposition 2.1 becomes applicable
polynomials satisfy the second recursion relation (2.4a) with

vz 1
gk -n(n 1 5+

Note that this assignment entails the (single) limitation S=a-1/:
It is, moreover, plain that with the assignment

3 L]
v=h+2c-=, hencedg=—-—+
2 2

the factorizations implied by Proposition 2.3 and the properties
L=2c- 372 These are new findings. As for the additional findir

Section 3.3.3. And Proposition 2.7 becomes as well applicable, ent:

3 om 1 i
Pobs-g gzt yyl= 1L

And Corollary 2.8 entails even more general properties, such as (n

24— 1.5 m
-2 -3

_m
4 2

3 1

- + = =0
4.' 4.'!"'] 4
Likewise with the assignments

v=2(n-1+4+c+v), henceog=-n+
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respectively,

'-'=2|Iﬂ—%+c+!,’:|1 hence a=-n+

Proposition 2.9 becomes applicable, entailing (new findings) the Di

pnix;—ﬂ+1—m—n+%—v,ﬂ=ni

respectively,

.Dnixi—”+§—!r";—”+1—!r’;!r’j|=

3

Note that the right-hand sides of the last two formulas coincide;
coincide as well.

3.3.3. Factorizations

The following new relations among continuous dual Hahn polynor
2.5:

Dl -m+ 1-F. 0, ¥ =D o m+8,1- 5,y 10l
3.4. Continuous Hahn (CH)

The monic continuous Hahn (CDH) polynomials gnix; o, 5, v, &) (se¢

parameters 2,8,c,d used there with a,/, v, &),

PrlxaB,¥,80= g0
are defined by the three-term recursion relations (3.1) with

anlni=-ila+A4,+Ch), b,

where

m-l+a+5+y+8ln+

A== (Zn-1+a+58+y+81(2r

- 1+85+yln-

E =
M 2n+a+8+y+4- 120+

The standard version of these polynomials reads (see [9])
Splxi By, 8= (-1 DRl

Let us recall that these polynomials are symmetrical under the exc

Dol B, 8 =palx Bo, v, 8) = palx;c

Let us now proceed and provide two identifications of the parametz

3.4.1. First Assignment
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With this assignment, one can set, consistently with our previous t

(V) _ Bt Y +E - 2yd +(1- 28
Ag in T T

wil =y,

implying, via (2.2), (2.3), that the polynomials ,D,'%"":'(x]l defined by
with the normalized CH polynomials (3.53):

o) = prlx; —v. 8
Hence, with this identification, Proposition 2.1 becomes applicable
polynomials satisfy the second recursion relation (2.4a) with

g..';.,”:'= i = 1+5+yiin-
(Zh-2-v+S+y+5120-

Note that this assignment entails no restriction on the 4 parameter

It is, moreover, plain that with the assignment

v=p-1+v, hencea=
the factorizations implied by Proposition 2.3 and the properties
L4=-1+vy. These are new findings. And Proposition 2.7 become

Diophantine factorization

Daldi-n+1-y,B,y,d]= ﬁ [

m=1
And Corollary 2.8 entails even more general properties, such as (n

Dal=id=1+y)-m+1-v.5y,8]=0,
3.4.2. Second Assignment

Analogous results also obtain from the assignment
W=—V.
With this assignment, one can set, consistently with our previous t

nplo+5-5+vI+(28- 1)
Z(2n -2 +a+£

,q;%lr“:' -

wW = gy,
implying, via (2.2), (2.3), that the polynomials ,D,I;,U:'I:XII defined by

with the normalized CH polynomials (3.53):

P =l 0,8, -
Hence, with this identification, Proposition 2.1 becomes applicable
polynomials satisfy the second recursion relation (2.4a) with
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intn-1+a+fn-
(2n-2-v+a+8+812n-

Note that this assignment entails no restriction on the 4 parameter

Q;;UL

It is, moreover, plain that with the assignment

v=n-1+4+a, hencey=
the factorizations implied by Proposition 2.3, and the properties
LU=-1+4d. These are new findings. And Proposition 2.7 become

Diophantine factorization

r
polxia,B-n+l-a,8)= TI [

m=1
And Corollary 2.8 entails even more general properties, such as (n

'Dn[."l:.d'— 1 +Iﬁ:|j GJ.BJ_m +1- GJE] =0,
3.5. Hahn

In this subsection, we introduce a somewhat generalized version
(generalized) monic Hahn polynomials pn(x;a,5,v) (see [9], and

with the arbitrary parameter ¥: hence the standard Hahn polynol
integer and n=1,2,... M),

Drlx;a,B,¥) = pplx
are defined by the three-term recursion relations (3.1) with

an(ﬂj=_(ﬁn+6n:h bn(ﬂ

where

m+l+alin+l+a+
Zrn+1l+a+502n+

An

a4+ 1l+a+5+y
(2n+a+52n+1

The standard version of these polynomials reads (see [9])

Cr=

. i+ l+a+A)
Q.".!I:K.l G_.,B_. !I"I:I_ |:1+G':|n|:_!r":|n

Let us now proceed and provide three identifications of the parame

3.5.1. First Assignment

With this assignment, one can set, consistently with our previous t

AV - nlE+ (1 +2yv - (5
22 -v+,
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wiWl=y-1,

implying, via (2.2), (2.3), that the polynomials p,';l,'“’:'(le defined by

with the normalized Hahn polynomials (3.69):

-D.'E.uu:l':X:' = Dplx) -v.f
Hence, with this identification, Proposition 2.1 becomes applicable,
polynomials satisfy the second recursion relation (2.4a) with

gl o _ mln 4+ S8 —
n (2r—v+502n +

Note that this assignment entails no restriction on the 3 parameter

It is, moreover, plain that with the assignments

respectively,

v=r+1+8+y
the factorizations implied by Proposition 2.3 and the properties
L4=1+5+y. These are new findings. And Proposition 2.7 becom

Diophantine factorizations

Dalxin, vl = ln'I (-
m=1

respectively,

]
Palxin+1+8+y, B yi= T1
M=
And Corollary 2.8 entails even more general properties, such as (n

'Dnl:.f— 1;m,ﬁ,!,-']l=l], 4‘-':1_:---
respectively,

Dalf+8+y;m+1+5+y, 8, v)=0, ¢

3.5.2. Second Assignment
B=-v+y+0,
where ¢ is an arbitrary parameter.

With this assignment, one can set, consistently with our previous t

d-y—Cc+v+2ay+i-
20 +y+c—

A,'%“:'=—n

wWl=1-viay-

implying, via (2.2), (2.3), that the polynomials p,';l,'“’:'(le defined by

with the normalized Hahn polynomials (3.69):
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2l = pali a,-v +

Hence, with this identification, Proposition 2.1 becomes applicable,
polynomials satisfy the second recursion relation (2.4a) with

(L _ hin+alin-1
Gr "= (Br—v+a+y+c)2n+

Note that this assignment entails no restriction on the 3 parameter
It is, moreover, plain that with the assignments

v=+y+c, hence
respectively,

v=r+14+ca+2v+c, hence S

the factorizations implied by Proposition 2.3 and the properties
L=v+0c, respectively, ti=1+0+2¢+c. These are new findings.

entailing (new findings) the Diophantine factorizations
Il
Balx;ja,—nyi= TI (x+
m=1

respectively,

|

Dalxja,—n-1-o-y,yi= ]|

m

And Corollary 2.8 entails even more general properties, such as (n

Dal—=f+1+y,0,-myi=0, I=1,

respectively,

Dpi—f-aja,-m-1-a-y,yl=0, {:

3.5.3. Third Assignment

f=-v+e,  y=
where ¢ is an arbitrary parameter.

With this assignment, one can set, consistently with our previous t

A(u}__n[v+a—c+2av+
f 22—V 4o

wlVl=y,
implying, via (2.2), (2.3), that the polynomials p,';l,'“’:'(le defined by

with the normalized Hahn polynomials (3.69):

PVt =pplx;a,-v -
Hence, with this identification, Proposition 2.1 becomes applicable,
polynomials satisfy the second recursion relation (2.4a) with
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nin+aiin+ 1

Q;;UL_
(2n-v+a+cl(2n+

Note that this assignment entails no restriction on the 4 parameter

It is, moreover, plain that with the assignment

V=H+, f=-n,
the factorizations implied by Proposition 2.3 and the properties im

These are new findings. And Proposition 2.7 becomes as well a
factorization

Il
Balxja,—mn+cl= TT 0
m=1
And Corollary 2.8 entails even more general properties, such as (n

Polf+ca,-m,m+c)=0, £=1,
3.6. Dual Hahn

In this subsection, we introduce a somewhat generalized versior
These (generalized) monic dual Hahn polynomials pgix; ¥, &m0 (

parameter & with the arbitrary parameter #: hence the standard
a positive integer and n=1,2,... M),

Dl v, d,0)=pnlx
are defined by the three-term recursion relations (3.1) with

an(ﬂ:':ﬁn"'ﬁnj bn("’?:'

where

An=(n+1+yiin-n, Cn=

The standard version of these polynomials reads (see [9])

1

Rl y,8.m) = e

Let us now proceed and provide two identifications of the parametz

3.6.1. First Assignment

=V,

With this assignment, one can set, consistently with our previous t
(il ¥t _
Al -r.'|:3+ 5 o |:1+'.f

W o w1+ v +y 4

implying, via (2.2), (2.3), that the polynomials ,D,I;,U:'I:XII defined by

with the normalized dual Hahn polynomials (3.92):
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o) = prlx; v,
Hence, with this identification, Proposition 2.1 becomes applicable
Hahn polynomials satisfy the second recursion relation (2.4a) with

gi!=-nin+y)

Note that this assignment entails no restriction on the 3 parameter

It is, moreover, plain that with the assignments

v=n-1, hencen-=
(which is, however, incompatible with the requirement characteriz
M a positive integer and n=1,2,... M), respectively,

v=n-1-4, hencens=
the factorizations implied by Proposition 2.3 and the properties
L =-1, respectively, t=-1-4&. These are new findings. As for the
are reported in Section 3.6.3. And Proposition 2.7 becomes

Diophantine factorizations
]
palxiy,&n-1)= T [x-(m-
m=1

respectively,

n
Doy dn-1-81= ]I [x-(»
m=1
And Corollary 2.8 entails even more general properties, such as (n

palle- 1)+ v +a) v, 4,m-1]1=0, ¢4

respectively,

Dalle+ylis-1-a v, é,m-1-4]=0,

While for

v=2r, hencen==2n, andr
respectively,

v==2h-4& hencern=2n-4, an
Proposition 2.9 becomes applicable, entailing (new findings) the Di
[l
Paly,y,2n)= T1 De- 22
respectively,

n

Dalxy, -y, 2n+y)= [x- (2
m=1

3.6.2. Second Assignment

v=—v, b=+
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With this assignment, one can set, consistently with our previous t

A,‘%“}=n[%+(1+r}jv+%c—|1l+v

W= (v - v+

implying, via (2.2), (2.3), that the polynomials p,';l,'“’:'(le defined by

with the normalized Dual Hahn polynomials (3.92):

PN =l v, v -
Hence, with this identification, Proposition 2.1 becomes applicable
Hahn polynomials satisfy the second recursion relation (2.4a) with

gl.';,'*’:'=—n|:n— 1-.

Note that this assignment entails no restriction on the 3 parameter

It is, moreover, plain that with the assignments

v=r, hencey=-n,

respectively,

v=f-1-7-c, hencey=-1+1-
the factorizations implied by Proposition 2.3 and the properties im
respectively, ti=-1-1-c. These are new findings. As for the ad«

reported in Section 3.6.3. And Proposition 2.7 becomes as well a
factorizations

Il
polxi-nn+c,ni= I [x-0
m=1

respectively,

i
palxi-n+l+n+c,n-1-n,n)= [] [x-
m=1

And Corollary 2.8 entails even more general properties, such as (n

Dalle- 1)is+c) -mm+c,nl=0, {:

respectively,

pallé-1-nlé-Z2-n-cli-m+1l+n+c,-m-1-

While for

v=2n-4, hencey=-2n+r, and moreo
respectively,

v=2n+1, hencey=-2n-1, and moreaver c=
Proposition 2.9 becomes applicable, entailing (new findings) the Di

]
Dalxi-2n+n,2n-n,nl= [x—(2r
m=1

respectively,
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3.6.3. Factorizations

N
Palxi-2r-1,2n-1-2n,n1= [ [x-
m=1

The following new relations among dual Hahn polynomials are impl

Dal v, =y, m—11=pa_mia v, —¥,—-m - 1o,

Pl vid,m - 1-8l=pn_miad,v,-m-1-v¥lom,

Dl =, M, 1) = Da_m G M, =, 00 s (x

Dalsi-m+l+n+c,m-1-mnl

=P mlxsm=-1-n,-m+1l+n+c,-n-c-2)0m(x; -

3.7. Shifted Meixner-Pollaczek (SMP)

In this subsection, we introduce and treat a modified version of tt
The standard (monic) Meixner-Pollaczek (MP) polynomials pnlx; @,

Drlxia, M) =paix

are defined by the three-term recursion relations (3.1) with

h

anlnl=aln+i)= T

o) =~ (1 +a)n(n - 1+24)

The standard version of these polynomials reads (see [9])

(2sing)”

P{'%f’l:'(x; tang) = 1 Dnilx;c

However, we have not found any assignment of the parameters r
machinery. We, therefore, consider the (monic) “shifted Meixner-

.Dn".llf.xil GJ'I:".InB:I =-D|".ll:x +

defined of course via the three-term recursion relation (3.1) with

Then, with the assignment
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(entailing no restriction on the parameters @, 4,5, in as much as t
set, consistently with our previous treatment,

*4.:;..“:' = %nl{an —ay =y — T —ac— ),

implying, via (2.2), (2.3), that the polynomials p,';l,'“’:'(le defined by

with the normalized shifted Meixner-Pollaczek polynomials:

1
i) = polxi -5 +0)
Hence, with this identification, Proposition 2.1 becomes applicabl

shifted Meixner-Pollaczek polynomials satisfy the second recursion

g,';,”:'=—%n(a +i

It is, moreover, plain that with the assignment

v=h-1-¢c hence,ﬁ.=—%l{n—1),

the factorizations implied by Proposition 2.3, and the properties
L=-1-c. And Proposition 2.7 becomes as well applicable, entailin

1 1.
pn(x,a,—gin— ljl,—EH{n -1- c+C)] o

And Corollary 2.8 entails even more general properties, such as (n

Palill- 1+ Cé—cj, a,—%l{m - lj,—%ﬁ(m -1-c+

3.8. Meixner

In this section (some results of which were already reported in
Dnix; 5,c) (see [9]),

Dl 5,c)=palx;
defined by the three-term recursion relations (3.1) with

anl)= EZHEEN

The standard version of these polynomials reads (see [9]):

n

1 ;-1
Mplxi 8,0l =
n (}.3].”( c ]
We now identify the parameter ¥ via the assignment
B=-v,

One can then set, consistently with our previous treatment,

H,'%”:'= All+c+2ev -(14+cih
2(1-c)

implying, via (2.2), (2.3), that the polynomials p,';l,'“’:'(le defined by
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with the normalized Meixner polynomials (3.25):

P = Dl v,
Hence, with this identification, Proposition 2.1 becomes applicat
Meixner polynomials satisfy the second recursion relation (2.4a) wi

{uy o &
Gri 1-c'
Note that this assignment entails no restriction on the 2 parameter

It is, moreover, plain that with the assignment

v=rh-1, hencef=
the factorizations implied by Proposition 2.3, and the properties
LU=-1. These are new findings. And Proposition 2.7 becomes
Diophantine factorization

(-
1

And Corollary 2.8 entails even more general properties, such as (n

Dl 1-n,c)=

=

pald-1;1-m,ci=0, £4=1,..

Likewise for

v=21 hence f=-2n andm
Proposition 2.9 becomes applicable, entailing (new finding) the Dio
[l

Dalx-2n,-1)= ] (x-
m=1

3.9. Krawtchouk

The monic Krawtchouk polynomials pn(x; @, (see [9]: and note t
M used there with the parameters & and /& used here, implying

positive integer these polynomials pn(x; @,5) coincide with the stan

Dpixia, 5= pplx;
are defined by the three-term recursion relations (3.1) with

aplnl=-af+n(2a-1),  bpln)=
The standard version of these polynomials reads (see [9])

1

Knlxio,f8)= m.ﬂn

We now identify the parameter v via the assignment

f=v,

One can then set, consistently with our previous treatment,

.4,';”:'=n|:%—a—av+|z—%+a:|.'
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implying, via (2.2), (2.3), that the polynomials p,';l,'“’:'(le defined by

with the normalized Krawtchouk polynomials (3.135):

oV = ppl

Hence, with this identification, Proposition 2.1 becomes applicat
Krawtchouk polynomials satisfy the second recursion relation (2.4¢

gl.'%,'*’:' =-on.

Note that this assignment entails no restriction on the 2 parameter

It is, moreover, plain that with the assignment

hence A -

(which is, however, incompatible with the definition of the standai

with & a positive integer), the factorizations implied by Propositio
become applicable with ti =-1. These are new findings. And Propos

finding) the Diophantine factorization

Dpixian-1)= ﬁ (-

m=1

And Corollary 2.8 entails even more general properties, such as (n

Likewise for

polf-1;a0,m=-1)=0, £=1,. .

v=2n hence f=2n andm

(which is also incompatible with the definition of the standard Krav

a positive integer), Proposition 2.9 becomes applicable, entailing (1

3.10. Jacobi

Dnlxi-2n,-1) =

(-
1

=

In this section (most results of which were already reported in

balx;a,B) (see [9]),

Drlx; o, B =pnix;
defined by the three-term recursion relations (3.1) with

(o + 50 -

- (Zn+o+ 510204+

dnin +alin +5)

2r+a+5-102n+0+

The standard version of these polynomials reads (see [9])
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Let us recall that for the Jacobi polynomials there holds the symme

Dal=x;8,0)=palx

We now identify the parameter v as follows:

==V,
With this assignment one can set, consistently with our previous tr

ALV niy +5)

Zn-v+i4
implying, via (2.2), (2.3), that the polynomials ,D,I;,U:'I:XII defined by

with the normalized Jacobi polynomials (3.146):

PRk = Pl v,
Hence, with this identification, Proposition 2.1 becomes appl
normalized Jacobi polynomials satisfy the second recursion relatior

g,'%”:'=— 2nin+f
(2 —-v+ 2020 -

It is, moreover, plain that with the assignment

v=r, hencecg=
the factorizations implied by Proposition 2.3, and the properties
L=0. These seem new findings. As for the additional findings ent

3.10.1. And Proposition 2.7 becomes as well applicable, entailing (

Dl —n, 8= (x-
And Corollary 2.8 entails even more general properties, suc
bl -, 58, m=1,.. ,n, feature x= 1 as a zero of order 1.

3.10.1. Factorizations

The following (not new) relations among Jacobi polynomials are i
(3.153), of which the following formula is a generalization, just as

Dol =, B = b i, Bl (g -, Bl = (- 1
3.11. Laguerre

In this section (most results of which were already reported in |
Dol a) (see [9]),

Dl al=prixy

defined by the three-term recursion relations (3.1) with

Fninl=-2n+1+al, bl

The standard version of these polynomials reads (see [9])

(-1"

L) = S ont
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We now identify the parameter v as follows:

==V,
With this assignment, one can set, consistently with our previous t

H,‘%"":'=—n|{n—v]|, i
implying, via (2.2), (2.3), that the polynomials p,'%”:'(le defined by

with the normalized Laguerre polynomials (3.155):

oI = ol -
Hence, with this identification, Proposition 2.1 becomes applicable
Laguerre polynomials satisfy the second recursion relation (2.4a) v

gl.'%'*’:'=n.

It is, moreover, plain that with the assignment

v=r, hencegs=
the factorizations implied by Proposition 2.3, and the properties
L'=0. These seem new findings. As for the additional findings ent

3.11.1. And Proposition 2.7 becomes as well applicable, entailing (

Dalx-ni=xT,

And Corollary 2.8 entails even more general properties, suct
Prlx;—m), m=1,... ,n, feature x =0 as a zero of order #, see (1.1

3.11.1. Factorizations

The following (not new) relations among Laguerre polynomials are
see (3.162), of which the following formula—already reported abo\

Dol =) = P30 B, - = x Mo,
3.12. Modified Charlier

In this subsection, we introduce and treat a modified version o
standard (monic) Charlier polynomials o,(x; @) (see [9]),

Dalxia )= palx;
are defined by the three-term recursion relations (3.1) with

apll=-n-a,  bylr
The standard version of these polynomials reads (see [9])
Crlx;ad= (-2} pal

However, we have not found any assignment of the parameter
machinery. To nevertheless proceed, we introduce the class of (m
characterized by the three-term recursion relation (3.1) with

http://www. hindawi. com/ journals/amp/2009/268134. html 2009-9-8



Additional Recursion Relations, Factorizations, and Diophantine P... Tifi%, 31/33

Fpll=-yin+al+5, b

that obviously reduce to the monic Charlier polynomials for =10, |

G=-v, y=-
one can set, consistently with our previous treatment,

AI.';"’:'= %n(n— 1- 2w+ 2a),

implying, via (2.2), (2.3), that the polynomials p,'%”:'(le defined by

with these (monic) modified Charlier polynomials:

PRt =ppl; a,-v

Hence, with this identification, Proposition 2.1 becomes applic
modified Charlier polynomials satisfy the second recursion relation

gl.';”:'=—n.

There does not seem to be any interesting results for the zeros of |

4. Outlook

Other classes of orthogonal polynomials to which our machinery i
in this paper, have been identified by finding explicit classes of ¢

orthogonal polynomials via the three-term recursion relations (2.
the validity of the various propositions reported above. Hence, for
results to those reported above hold, namely an additional thr
parameter ¥, and possibly as well factorizations identifying Dic

hopefully soon, in a subsequent paper, where we also elucidate
reported above and the wealth of known results on discrete integi
with the machinery reported above are as well under investigal
recursion relations satisfied by the classes of orthogonal polynon

(2.1) (for appropriate choices of the coefficients a,'%“j' and b,';,”:')

polynomials—possibly including the identification of ODEs satisfied

Appendix

A. A proof

In this Appendix, for completeness, we provide a proof of the fac
although this proof is actually quite analogous to that provided (fc

proceed by induction, assuming that (2.11) holds up to 1, and thel
in the right-hand side of the relation (2.1a) with ¥ =, we get

p ) = [+ 3 B0 + b I pom)

and clearly by using the recursion relation (2.12a) the square brz

(=)
n+l-mn

replaced by F (%], yielding
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plmidig = pomd  Gap i,

Note that for rim =+ + 1, this formula is an identity, since 5':0"""":'(le

holds for 1=, provided that (2.9) holds, see (2.1a) with =1 an
But this is just the formula (2.11) with # replaced by #+ 1. Q. E. D

Remark A .1. The hypothesis (2.9) has been used above, in this p
the final formula, (A.2), for &+ =r. Hence one might wonder whett
validity of the final formula (A.2) for /17 = seems to be implied by
invoke (2.9). But in fact, by setting 57 =h in the basic recurrence
only hold provided (2.9) also holds.
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