Mathematical Physics

Spectral Singularities, Biorthonormal Systems, and a Two-Parameter Family of Complex Point Interactions

Ali Mostafazadeh, Hossein Mehri-Dehnavi

(Submitted on 23 Jan 2009 (v1), last revised 10 Feb 2009 (this version, v2))

Abstract

A curious feature of complex scattering potentials $v(x)$ is the appearance of spectral singularities. We offer a quantitative description of spectral singularities that identifies them with an obstruction to the existence of a complete biorthonormal system consisting of the eigenfunctions of the Hamiltonian operator, i.e., - $-\operatorname{frac}\left\{d^{\wedge} 2\right\}\left\{d x^{\wedge} 2\right\}+v(x)$, and its adjoint. We establish the equivalence of this description with the mathematicians' definition of spectral singularities for the potential $v(x)$ =z_--\delta(x+a)+z_+\delta(x-a), where z_\pm and a are respectively complex and real parameters and $\backslash \operatorname{delta}(x)$ is the Dirac delta-function. We offer a through analysis of the spectral properties of this potential and determine the regions in the space of the coupling constants $z_{-} \backslash p m$ where it admits bound states and spectral singularities. In particular, we find an explicit bound on the size of certain regions in which the Hamiltonian is quasi-Hermitian and examine the consequences of imposing PT-symmetry.

Comments: Expanded version, 33 pages, 11 figures, accepted for publication in J. Phys. A
Subjects: Mathematical Physics (math-ph); Quantum Physics (quant-ph)
DOI: 10.1088/1751-8113/42/12/125303
Cite as: arXiv:0901.3563v2 [math-ph]

Submission history

From: Ali Mostafazadeh [view email]
[v1] Fri, 23 Jan 2009 13:59:23 GMT (897kb)
[v2] Tue, 10 Feb 2009 11:36:53 GMT (899kb)
Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse context:

math-ph

< prev | next >
new | recent | 0901
Change to browse by:
math
quant-ph

References \& Citations

- CiteBase

Bookmark(what is this?)
 CiteULike logo

Connotea logo
BibSonomy logo
Mendeley logo
Facebook logo
del.icio.us logo

Digg logo
Reddit logo

Link back to: arXiv, form interface, contact.

