2005 Vol. 43 No. 2 pp. 337-340 DOI:

Theoretical Studies of Electron Paramagnetic Resonance Parameters for Cr^{4+} lons in Ca_2GeO_4 Crystals

WU Xiao-Xuan, ^{1,2,3} ZHENG Wen-Chen, ^{1,3} and MEI Yang¹

¹ Department of Material Science, Sichuan University, Chengdu 610064, China
² Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, China
³ International Center for Materials Physics, the Chinese Academy of Sciences, Shenyang 110016, China
(Passived: 2004 6, 22: Pavised:)

(Received: 2004-6-23; Revised:)

Abstract: The electron paramagnetic resonance (EPR) parameters (zero-field splitting D and g factors g_{\parallel} , g_{\perp}) of Cr⁴⁺ ions in Ca₂GeO₄ crystals have been calculated from the complete high-order perturbation formulas of EPR parameters for a $3d^2$ ion in trigonal MX₄ clusters. In these formulas, in addition to the contributions to EPR parameters from the widely used crystal-field (CF) mechanism, the contributions from the charge-transfer (CT) mechanism (which are often neglected) are included. From the calculations, it is found that for the high valence state $3d^n$ ions in crystals, the reasonable explanation of EPR parameters (in particular, the g factors) should take both the CF and CT mechanisms into account.

PACS: 76.30.Fc, 71.70.Ch, 78.50.Ec, 71.55.Ht Key words: crystal- and ligand-field theory, electron paramagnetic resonance, charge-transfer mechanism, optical spectroscopy, tunable laser crystal

[Full text: PDF]

Close