2005 Vol. 43 No. 3 pp. 529-538 DOI:

Improved Ligand-Field Theory with Effect of Electron-Phonon Interaction

MA Dong-Ping^{1,2} and CHEN Ju-Rong¹

¹ Department of Applied Physics, Sichuan University, Chengdu 610065, China
² International Centre for Materials Physics, Academia Sinica, Shenyang 110015, China (Received: 2004-6-15; Revised:)

Abstract: Traditional ligand-field theory has to be improved by taking into account both "pure electronic" contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, R_1 , R_2 , R_3 ', R_2 ', and R_1 ' lines, U band, ground-state zero-field-splitting (GSZFS), and ground-state g factors of ruby and/or GSGG: Cr^{3+} as well as thermal shifts of GSZFS, R_1 line and R_2 line of ruby have been calculated. The results are in very good agreement with the experimental data. Moreover, it is found that the value of cubic-field parameter given by traditional ligand-field theory is inappropriately large. For thermal shifts of GSZFS, R_1 line and R_2 line of ruby, several conclusions have also been obtained.

PACS: 71.70.Ch, 76.30.Fc, 78.20. Nv, 63.20.Mt Key words: improved ligand-field theory, electron-phonon interaction, Stokes shift, energy spectrum, thermal shift, g factor

[Full text: PDF]

Close