2001 Vol. 36 No. 4 pp. 509-512 DOI:

Exact Solution in the New Inflation Scenario with Induced Gravity

WANG Wen-Fu

Department of Industrial Automation, Southwest Petroleum Institute, Nanchong 637001, Sichuan Province, China (Received: 2001-1-19; Revised:)

Abstract: Taking the Hubble parameter directly as a function of the scalar field ϕ instead of as a function of time, H=H(ϕ), we present a new exact solution in the new inflation model with induced gravity. This includes solution which is inflation for $\phi_0 \leqslant \phi \leqslant \phi_{end}$, and develops smoothly towards radiation-like evolution for $\phi \geqslant \phi_{end}$. The inflation is driven by the evolution of the field ϕ with inflation potential, $V(\phi) = (\lambda/4) (\phi^2 \cdot \upsilon^2)^2$. The spectral index of the scalar density, n_{s} , is computed and n_{s} lies well inside the limits set by the cosmic background explorer (COBE) satellite. The effective cosmological constant Λ_{eff} tends to zero when inflation ends.

PACS: 98.80.Cq, 04.50.+h Key words: induced gravity, new inflation, exact solution, spectral indices, effective cosmological constant

[Full text: PDF]

Close