General Relativity and Quantum Cosmology

A Consistent Gravitationally-Coupled Spin-2 Field Theory

H. I. Arcos, Tiago Gribl Lucas, J. G. Pereira

(Submitted on 19 Jan 2010)

Inspired in teleparallel gravity, instead of being represented by a symmetric second-rank tensor, a fundamental spin-2 field is assumed to be represented by a spacetime (world) vector field assuming values in the Lie algebra of the translation group. The flat-space theory naturally emerges in the Fierz formalism, and is both gauge and local Lorentz invariant. The corresponding gravitationally-coupled theory is shown not to present the consistency problems of the usual spin-2 theory constructed on the basis of general relativity.

Comments: 14 pages, no figures

Subjects: General Relativity and Quantum Cosmology (gr-qc); High Energy

Physics - Theory (hep-th)

Cite as: arXiv:1001.3407v1 [gr-qc]

Submission history

From: Jose Geraldo Pereira [view email] [v1] Tue, 19 Jan 2010 21:00:21 GMT (12kb)

Which authors of this paper are endorsers?

Download:

- PostScript
- PDF
- Other formats

Current browse context:

gr-qc

< prev | next >
new | recent | 1001

Change to browse by:

hep-th

References & Citations

- SLAC-SPIRES HEP (refers to | cited by)
- CiteBase

Bookmark(what is this?)

X CiteULike logoX Connotea logo

_

BibSonomy logo

Mendeley logo

▼ Facebook logo

x del.icio.us logo

💌 Digg logo 📗

Reddit logo

Link back to: arXiv, form interface, contact.