General Relativity and Quantum Cosmology

Topological geon black holes in Einstein-Yang-Mills theory

George T. Kottanattu, Jorma Louko

(Submitted on 23 Jan 2010)

We construct topological geon quotients of two families of Einstein-Yang-Mills black holes. For Kuenzle's static, spherically symmetric SU(n) black holes with n>2, a geon quotient exists but generically requires promoting charge conjugation into a gauge symmetry. For Kleihaus and Kunz's static, axially symmetric SU(2) black holes a geon quotient exists without gauging charge conjugation, and the parity of the gauge field winding number determines whether the geon gauge bundle is trivial. The geon's gauge bundle structure is expected to have an imprint in the Hawking-Unruh effect for guantum fields that couple to the background gauge field.

Comments: 24 pages

Subjects: General Relativity and Quantum Cosmology (gr-qc) Cite as: arXiv:1001.4195v1 [gr-qc]

Submission history

From: Jorma Louko [view email] [v1] Sat, 23 Jan 2010 19:26:03 GMT (24kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

All papers 🗕

Download:

- PostScript
- PDF
- Other formats

Current browse context: gr-qc < prev | next >

new | recent | 1001

References & Citations

- SLAC-SPIRES HEP (refers to | cited by)
- CiteBase

Bookmark(what is this?) X CiteULike logo **x** Connotea logo

BibSonomy logo	
Mendeley logo	
Facebook logo	
🗙 del.icio.us logo	
X Digg logo	Reddit logo