2002 Vol. 38 No. 5 pp. 571-576 DOI:

Dynamical Running Mass of Quark in the Dyson-Schwinger Equation Approach MA Wei-Xing,^{1,2,3} SHEN Peng-Nian,^{1,2} and ZHOU Li-Juan³

¹ Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100039, China ² Institute of Theoretical Physics, the Chinese Academy of Sciences, Beijing 100080, China ³ Department of Information and Computing Science, Guangxi University of Technology, Liuzhou 545006, China (Received: 2002-3-4; Revised:)

Abstract: Based on the Dyson-Schwinger equations of QCD in the ``rainbow" approximation, the fully dressed quark propagator $S_f(p)$ is investigated, and then an algebraic parametrization form of the propagator is obtained as a solution of the equations. The dressed quark amplitudes A_f and B_f built up the fully dressed quark propagator and the dynamical running masses M_f defined by A_f and B_f for light quarks u, d and s are calculated, respectively. Using the predicted running masses M_f , quark condensates $\langle 0|\bar{q}(0)q(0)|0\rangle = -(0.255 \text{ GeV})^3$ for u, d quarks, and $\langle 0|\bar{s}s|0\rangle = 0.8 \langle 0|\bar{q}(0)q(0)|0\rangle$ for s quark, and experimental pion decay constant $f_{\pi}=0.093$ GeV, the masses of Goldstone bosons K, π , and η are also evaluated. The numerical results show that the masses of quarks are dependent on their momentum p^2 . The fully dressed quark amplitudes A_f and B_f have correct behaviors which can be used for many purposes in our future researches on nonperturbative QCD.

PACS: 14.65.-q Key words: Dyson-Schwinger equations, quark propagator, quark mass, the masses of Goldstone bosons

[Full text: PDF]

Close