2004 Vol. 42 No. 3 pp. 419-424 DOI:

Quantum Statistical Properties of k-Quantum Nonlinear Coherent States

WANG Ji-Suo, ^{1, 2, 3} LIU Tang-Kun, ^{3, 4} FENG Jian, ¹ and SUN Jin-Zuo²

¹ Department of Physics, Liaocheng University, Liaocheng 252059, China
² Department of Physics, Yantai University, Yantai 264005, China
³ State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
⁴ Department of Physics, Hubei Normal University, Huangshi 435002, China (Received: 2004-1-13; Revised:)

Abstract: In our preceding work, a class of k-quantum nonlinear coherent states, i.e., the k eigenstates of the powers $\lambda \{B\}^k$ ($k \geq 3$) of the annihilation operator $\lambda \{B\} = \lambda \{a\} \{f(\lambda \{N\})\}$ of f-oscillators, are introduced. In this paper, we introduce a new kind of higher-order squeezing and an antibunching effect. The quantum statistical properties of the k states are studied. The result shows that the M-th order (n+1/2)k; $n = 0, 1, \lambda d$ squeezing effects exist in all of the k states when k is even. There is the antibunching effect in all of the k states.

PACS: 42.50.Dv, 03.65.-w, 03.65.Ca, Key words: eigenstate, \$k\$-quantum nonlinear coherent states, higher-order squeezing, antibunching

[Full text: PDF]

Close