2003 Vol. 39 No. 5 pp. 613-616 DOI:

Tunneling Dynamics of Two-Species Bose-Einstein Condensates

YANG Li-Min,¹ YU Zhao-Xian,^{2,3} and JIAO Zhi-Yong²

 $^{\rm 1}$ Department of Applied Mathematics, University of Petroleum (East Chin), Dongying 257061, China

² Department of Applied Physics, University of Petroleum (East China), Dongying 257061, China
³ Theoretical Physics Division, Nankai Institute of Mathematics, Nankai University, Tianjin 300071, China (Received: 2002-3-1; Revised: 2002-12-3)

Abstract: We have studied the tunneling dynamics of two-species Bose-Einstein condensates. It is shown that the population difference and the Josephson-like tunneling current between the two condensates exhibit oscillation behaviors and there exists macroscopic quantum selftrapping, which strongly depends on the initial state, interatomic nonlinear self-interaction, interspecies nonlinear interaction, and the total number of atoms in the two condensates.

PACS: 74.50.+r, 05.30.Jp Key words: tunneling dynamics, two-species Bose-Einstein condensates, macroscopic quantum self-trapping

[Full text: PDF]

Close