2001 Vol. 36 No. 1 pp. 7-10 DOI:

(3+1)-Dimensional Quantum Mechanics from Monte Carlo Hamiltonian: Harmonic Oscillator

LUO Xiang-Qian, ^{1,3} XU Hao, ¹ YANG Jie-Chao, ² WANG Yu-Li, ² CHANG Di, ² LIN Yin² and Helmut Kröger³

- ¹ Department of Physics, Zhongshan University, Guangzhou 510275, China
- 2 Guangdong National Communication Network Science & Technology Stock Co., Ltd., Guangzhou 510080, China
- ³ Department de Physique, Universite Laval, Quebec, Quebec G1K 7P4, Canada (Received: 2000-8-4; Revised: 2000-11-27)

Abstract: In Lagrangian formulation, it is extremely difficult to compute the excited spectrum and wavefunctions of a quantum theory via Monte Carlo methods. Recently, we developed a Monte Carlo Hamiltonian method for investigating this hard problem and tested the algorithm in quantum-mechanical systems in 1+1 and 2+1 dimensions. In this paper we apply it to the study of the low-energy quantum physics of the (3+1)-dimensional harmonic oscillator.

PACS: 02.50.U, 03.65.G

Key words: Monte Carlo method, quantum mechanics, computational physics

[Full text: PDF]

Close