2007 Vol. 47 No. 5 pp. 843-846 DOI:

Schwarzschild-de-Sitter Solution in Quantum Gauge Theory of Gravity Gheorghe Zet, ¹ Camelia Popa, ² and Doina Partenie²

 Department of Physics, "Gh. Asachi" Technical University, Iasi 700050, Romania
Faculty of Physics, "Al. I. Cuza" University, Iasi 700506, Romania (Received: 2006-5-17; Revised:)

Abstract: We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then we introduce the gauge-covariant derivative D $_{\mu}$. The strength tensor of the gravitational gauge field is also obtained and a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge potentials $A_{\mu}{}^{\alpha}(x)$ have spherical symmetry, depending only on the radial coordinate r is considered and an analytical solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then determined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V platform, along with several routines that we have written for our model.

PACS: 04.60.-m, 04.20.Cv, 11.15.-q, 11.10.Gh

Key words: gauge theory, gravitational field, spherical symmetry

[Full text: PDF]

Close