Nonlinear Sciences > Chaotic Dynamics

Statistical Approach to Quantum Chaotic Ratchets

Itzhack Dana

(Submitted on 15 Mar 2010)

The quantum ratchet effect in fully chaotic systems is approached by studying, for the first time, \emph{statistical} properties of the ratchet current over well-defined sets of initial states. Natural initial states in a semiclassical regime are those that are \emph{phase-space uniform} with the \emph{maximal possible} resolution of one Planck cell. General arguments in this regime, for quantum-resonance values of a scaled Planck constant \$\hbar\$, predict that the distribution of the current over all such states is a zero-mean Gaussian with variance \$\sim D\hbar^{2}/ (2\pi^{2})\$, where \$D\$ is the chaotic-diffusion coefficient. This prediction is well supported by extensive numerical evidence. The average strength of the effect, measured by the variance above, is \emph{significantly larger} than that for the usual momentum states and other states. Such strong effects should be experimentally observable.

Comments:	REVTEX4, 13 pages, 4 figures
Subjects:	Chaotic Dynamics (nlin.CD); Statistical Mechanics (cond-
	mat.stat-mech); Quantum Physics (quant-ph)
Journal reference:	Physical Review E 81, 036210 (2010)
DOI:	10.1103/PhysRevE.81.036210
Cite as:	arXiv:1003.2995v1 [nlin.CD]

Submission history

From: Itzhack Dana [view email] [v1] Mon, 15 Mar 2010 19:14:59 GMT (28kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:

- PDF
- PostScript
- Other formats

Current browse context: nlin.CD < prev | next > new | recent | 1003

Change to browse by:

cond-mat cond-mat.stat-mech nlin quant-ph

References & Citations

• CiteBase

