Photonic spectrum of bichromatic optical lattices

Stefan Rist, Patrizia Vignolo, Giovanna Morigi

(Submitted on 15 Jan 2009 (v1), last revised 21 Apr 2009 (this version, v2))

We study the photonic spectrum of a one-dimensional optical lattice possessing a double primitive cell, when the atoms are well localized at the lattice minima. While a one-dimensional lattice with a simple Wigner-Seitz cell always possesses a photonic bandgap at the atomic resonance, in this configuration the photonic transmission spectrum may exhibit none, double or multiple photonic bandgaps depending on the ratio between the interparticle distance \$\varrho\$ inside the cell and the cell size \$a\$. The transmission spectra of a weak incident probe are evaluated when the atoms are trapped in free space and inside an optical resonator for realistic experimental parameters.

Comments:10 pages, 10 figures, to appear in PRASubjects:Quantum Physics (quant-ph); Other Condensed Matter (cond-
mat.other)Journal reference:Phys. Rev. A 79, 053822 (2009)Cite as:arXiv:0901.2295v2 [quant-ph]

Submission history

From: Stefan Rist [view email] [v1] Thu, 15 Jan 2009 16:09:05 GMT (1411kb) [v2] Tue, 21 Apr 2009 10:12:42 GMT (1414kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:

- PDF
- PostScript
- Other formats

Current browse context: quant-ph < prev | next >

new | recent | 0901

Change to browse by:

cond-mat cond-mat.other

References & Citations

- SLAC-SPIRES HEP (refers to | cited by)
- CiteBase

Bookmark(what is this?)

