Quantum Physics

Preparation of atomic Fock states by trap reduction

M. Pons, A. del Campo, J. G. Muga, M. G. Raizen

(Submitted on 28 Jan 2009)

We describe the preparation of atom-number states with strongly interacting bosons in one dimension, or spin-polarized fermions. The procedure is based on a combination of weakening and squeezing of the trapping potential. For the resulting state, the full atom number distribution is obtained. Starting with an unknown number of particles N_i , we optimize the sudden change in the trapping potential which leads to the Fock state of N_f particles in the final trap. Non-zero temperature effects as well as different smooth trapping potentials are analyzed. A simple criterion is provided to ensure the robust preparation of the Fock state for physically realistic traps.

Comments:	5 pages, 5 figures
Subjects:	Quantum Physics (quant-ph) ; Quantum Gases (cond- mat.quant-gas)
Journal reference:	Phys. Rev. A 79, 033629 (2009)
DOI:	10.1103/PhysRevA.79.033629
Cite as:	arXiv:0901.4529v1 [quant-ph]

Submission history

From: Adolfo del Campo [view email] [v1] Wed, 28 Jan 2009 18:55:57 GMT (263kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:

- PDF
- PostScript
- Other formats

Current browse context: quant-ph < prev | next > new | recent | 0901

Change to browse by:

cond-mat cond-mat.quant-gas

References & Citations

- SLAC-SPIRES HEP (refers to | cited by)
- CiteBase

1 blog link(what is this?)

