Go!

Δ

All papers 🔽

Quantum Physics

Bloch oscillations of Bose-Einstein condensates: Quantum counterpart of dynamical instability

Andrey R. Kolovsky, Hans Jürgen Korsch, Eva-Maria Graefe

(Submitted on 29 Jan 2009 (v1), last revised 25 Jun 2009 (this version, v2))

We study the Bloch dynamics of a quasi one-dimensional Bose-Einstein condensate of cold atoms in a tilted optical lattice modeled by a Hamiltonian of Bose-Hubbard type: The corresponding mean-field system described by a discrete nonlinear Schr\"odinger equation can show a dynamical (or modulation) instability due to chaotic dynamics and equipartition over the quasimomentum modes. It is shown, that these phenomena are related to a depletion of the Floquet-Bogoliubov states and a decoherence of the condensate in the many-particle description. Three different types of dynamics are distinguished: (i) decaying oscillations in the region of dynamical instability, and (ii) persisting Bloch oscillations or (iii) periodic decay and revivals in the region of stability.

Comments: 12 pages, 14 figures

Subjects: Quantum Physics (quant-ph)

Journal reference: Phys. Rev. A80 (2009) 023617

Cite as: arXiv:0901.4719v2 [quant-ph]

Submission history

From: H. J. Korsch [view email]

[v1] Thu, 29 Jan 2009 16:55:59 GMT (359kb)

[v2] Thu, 25 Jun 2009 05:28:24 GMT (366kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:

- PDF
- PostScript
- Other formats

Current browse context:

quant-ph

< prev | next >
new | recent | 0901

References & Citations

- SLAC-SPIRES HEP (refers to | cited by)
- CiteBase

Mendeley logo

