Quantum Physics

Quantum Imaging beyond the Diffraction Limit by Optical Centroid Measurements

Mankei Tsang (Massachusetts Institute of Technology)

(Submitted on 30 Jan 2009 (v1), last revised 22 Jun 2009 (this version, v2))

I propose a quantum imaging method that can beat the Rayleigh-Abbe diffraction limit and achieve de Broglie resolution without requiring a multiphoton absorber as the detector. Using the same non-classical states of light as those for quantum lithography, the proposed method requires only intensity measurements, followed by image post-processing, to produce the same complex image patterns as those in quantum lithography. The method is expected to be experimentally realizable using current technology.

Comments: 4 pages, 2 figures; v2: accepted by PRL, see also the

accompanying Viewpoint commentary by Anisimov and Dowling

[Physics 2, 52 (2009), this http URL]

Subjects: Quantum Physics (quant-ph)

Journal reference: Physical Review Letters (Editors' Suggestion) 102, 253601

(2009)

DOI: 10.1103/PhysRevLett.102.253601
Cite as: arXiv:0901.4817v2 [quant-ph]

Submission history

From: Mankei Tsang [view email]

[v1] Fri, 30 Jan 2009 02:15:54 GMT (25kb) [v2] Mon, 22 Jun 2009 18:31:08 GMT (28kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:

- PDF
- PostScript
- Other formats

Current browse context:

quant-ph

< prev | next >
new | recent | 0901

References & Citations

- SLAC-SPIRES HEP (refers to | cited by)
- CiteBase

CiteULike logo

× Connotea logo

≭ BibSonomy logo

Mendeley logo

▼ Facebook logo

x del.icio.us logo

x Digg logo x Reddit logo