Turkish Journal

of

Physics

phys@tubitak.gov.tr

Scientific Journals Home Page

Turkish Journal of Physics

Quaternionic Roots of E 8 Related Coxeter Graphs and Quasicrystals

Mehmet KOCA, Nazife Özdeş KOCA Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khod 123 Muscat, Sultanate of Oman, Department of Physics, Çukurova University, 01330 Adana - TURKEY Ramazan KOÇ Department of Physics, Çukurova University, 01330 Adana - TURKEY

<u>Abstract:</u> The lattice matching of two sets of quaternionic roots of F_4 leads to quaternionic roots of E_8 which has a decomposition $H_4 + \sigma H_4$ where the Coxeter graph H_4 is represented by the 120 quaternionic elements of the binary icosahedral group. The 30 pure imaginary quaternions constitute the roots of H_3 which has a natural extension to $H_3 + \sigma H_3$ describing the root system of the Lie algebra D_6 . It is noted that there exist three lattices in 6-dimensions whose point group $W(D_6)$ admits the icosahedral symmetry H_3 as a subgroup, the roots of which describe the mid-points of the edges of an icosahedron. A natural extension of the Coxeter group H_2 of order 10 is the Weyl group $W(A_4)$ where $H_2 + \sigma H_2$ constitute the root system of the Lie algebra A_4 . The relevance of these systems to quasicrystals are discussed.

Turk. J. Phys., **22**, (1998), 421-436. Full text: <u>pdf</u> Other articles published in the same issue: <u>Turk. J. Phys.,vol.22,iss.5</u>.