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Motivated by several recent experiments, we investigate phonon-assisted electronic transport through sus-
pended carbon nanotube quantum dots including electron-electron, electron-phonon, and spin-orbit interactions.
By effectively decoupling the electron and phonon thermodynamics, we present an explanation for the puzzling
thermoinduced vibrational absorption sidebands, as well further predict that these absorption sidebands are
obviously diminished in the partially filled Coulomb diamonds due to the destructive superposition of electron
and hole states. The spin-orbit coupling is shown to split all phonon-assisted sidebands while the Kramers
degeneracy remains. Interestingly, in the strong spin-orbit coupling regime, some split absorption sidebands are
suppressed by the Coulomb blockade effect, while all split emission sidebands always survive.
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I. INTRODUCTION

Quantum dots (QDs) formed within suspended carbon nan-
otubes (CNTs) are promising nanoelectromechanical systems1

due to their exceptional electronic and mechanical properties.
Such QD systems are characterized by a remarkably strong
electromechanical coupling.2–4 Their transport spectroscopy
has revealed generic vibrational sidebands4–7 which arise
from electronic tunneling processes mediated by emission or
absorption of phonons. These phonon-assisted processes can
become the dominant mechanism in the polaronic transport
through systems with strong electron-phonon (EP) coupling.8,9

Indeed, the recent experiment4 on high-quality CNT samples
is able to access this transport regime, allowing the observation
of exotic features of the vibrational sidebands, such as
the fourfold periodicity, the Franck-Condon blockade, the
shift of Coulomb diamond tips, and even the surprising
appearance of absorption sidebands for increasing temper-
atures. The last observation is unexpected since thermally
induced absorption sidebands are theoretically shown to
be impossible.9 The underlying physics has not yet been
understood.4

It is also well established that in ultraclean CNT QDs
the confined electrons are subject to an enhanced spin-orbit
(SO) coupling due to the tube curvature.10,11 Remarkably,
energy scales of the measured SO interaction range from
a few 100 μeV to a few meV,10,11 being comparable with
characteristic scales (i.e., phonon energies) of the observed
vibrational sidebands, at least for the longitudinal stretching
mode of CNTs.4,5 Interesting physics then arises when the
two scales merge in the same systems. By studying such
cases, insights into the influence of the SO coupling on
the polaronic transport through suspended CNT QDs can be
brought.

In this paper we address these issues within a model taking
account of electron-electron (EE), EP, and SO interactions
for suspended CNT QDs. We combine the nonequilibrium
Keldysh technique,12 polaronic transformation,13,14 and equa-
tion of motion (EOM) approach12,15 to demonstrate the pola-

ronic transport properties of the system. These, for negligible
SO coupling, concur well with the experiment.4 In particular,
based on an EP nonequilibrium thermodynamics, the thermally
induced absorption sidebands are reproduced, and are further
shown to be more prominent in the empty and fully filled
Coulomb diamonds than in partially filled ones where phonon-
absorbed tunnelings are taking place through mixed electron
and hole states. For strong SO coupling, phonon-assisted
tunnelings manifest as vibrational sidebands splitting in the
Kramers sector. The conductance characteristics are thus
heavily modified. In this regime, the Coulomb blockade effect
plays an important role in determining the intensities of split
absorption sidebands.

The rest of the paper is organized as follows. In Sec. II,
we introduce the relevant model Hamiltonian and solve the
transport problem for suspended CNT QDs. Numerical results
and their discussions are presented in Sec. III. Finally, Sec. IV
is devoted to a summary.

II. THEORY

Suspended CNTs support several quantized vibrational
modes which, for a small dot formed within the long suspended
segment, only couple to the intradot charge with different
Holstein coupling strength.7,16 The dominantly coupled mode
is the longitudinal stretching mode16 whose phonon energy
εp is inversely proportional to the CNT length.5 On the other
hand, the electronic states of CNT QDs form four-electron
shell structures, representing twofold spin and orbital degrees
of freedom. In the lowest shell, the four SO states were thought
to be degenerate. Inclusion of SO interaction then splits this
fourfold degeneracy into two Kramers doublets.17,18 As a
result, the low-energy electronic spectrum of CNT QDs can
be written as19 εσλ = εd − σλ�/2. Here εd is the bare level
which can be tuned by a gate voltage; σ,λ = ± are quantum
numbers labeling two spin and orbital states, respectively;
and � is the strength of SO coupling which is inversely
proportional to the CNT diameter.10,18 Restricting ourselves
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to the filling of one shell, we model a suspended CNT QD
coupled to source (L) and drain (R) leads by the following
Anderson-Holstein Hamiltonian

H =
∑
m

εmd̂†
md̂m + U

2

∑
m�=m′

n̂mn̂m′ + Mn̂(b̂† + b̂) + εpb̂†b̂

+
∑
k,m,α

[εkĉ
†
kmαĉkmα + (Vαĉ

†
kmαd̂m + H.c.)], (1)

where the index m ≡ {σ,λ} is a combination of the spin and
orbital indices, labeling the four SO states, d̂

†
m (ĉ†kmα) creates

an electron of energy εm (εk) in the dot [α lead (α = L,R)],
n̂ = ∑

m n̂m with n̂m = d̂
†
md̂m means the total dot charge, U

denotes the on-site EE Coulomb repulsion, the vibrational
mode of the CNT is excited by the phonon operator b̂†, and M

is the Holstein EP coupling strength. The dot-lead tunneling is
accounted for by the tunnel matrix element Vα which induces
an intrinsic linewidth of the dot levels � = ∑

α �α with �α =
πρ|Vα|2, where ρ is the electronic density of states (EDOS) in
the leads.

Within the Keldysh formalism,12 the electronic cur-
rent through our system in the wide-band limit is given
by I = 4e

h
π�L�R

�L+�R

∫
dε[fL(ε) − fR(ε)]ρd (ε), where ρd (ε) =

− 1
π

∑
m Im Gr

m(ε) is the local EDOS on the dot, Gr
m(ε) =

− i
h̄

∫
dt eiεt/h̄θ (t)〈{d̂m(t),d̂†

m}〉H is the dot retarded Green’s
function (GF) of the Hamiltonian (1) with θ (t) being the
Heaviside step function, and fα(ε) represents the Fermi
distribution function in the α lead.

In order to elucidate the polaronic transport scenario
from this current expression, one needs to solve the dot
GF Gr

m(ε), which includes full correlation effects from the
EE, EP, and SO interactions. To this end, we first ap-
ply a polaronic transformation13,14 H → H̃ = eSHe−S , with
S = (M/εp)n̂(b̂† − b̂), to the Hamiltonian (1). This gives us
H̃ = H̃p + H̃e, where H̃p = εpb̂†b̂ and

H̃e =
∑
m

ε̃md̂†
md̂m +

∑
k,m,α

εkĉ
†
kmαĉkmα + Ũ

2

∑
m�=m′

n̂mn̂m′

+
∑
k,m,α

(Ṽαĉ
†
kmαd̂m + H.c.), (2)

with ε̃m = ε̃d − σλ�/2, ε̃d = εd − gεp, Ũ = U − 2gεp,
Ṽα = VαX̂, and X̂ = exp[

√
g(b̂ − b̂†)]. Here g = M2/ε2

p is
a dimensionless measure of EP coupling. Next, we decou-
ple the electronic (H̃e) and phononic (H̃p) dynamics by
replacing here the operator X̂ with its expectation value 〈X̂〉.
This approximation has been widely used in the literature20

and is valid for the strong EP interaction M > � that
favors the formation of local polarons,14,21 as is the case with
the experiment.4 The only effect of 〈X̂〉 is that it narrows
the width of tunneling resonances when the EP coupling
is significantly strong. In particular, 〈X̂〉 and the dot-lead
coupling Vα emerge in the form Vα〈X̂〉 always. We can
thus incorporate the expectation value 〈X̂〉 into the dot-lead
coupling and redefine the renormalized resonance width22 as
�̃α = πρ|Ṽα|2. Evaluating the phonon part of the trace
by Feynman disentangling technique,14 and employing the
Keldysh equations for relevant lesser and greater GFs12 that

collect all electron and hole contributions,23 the desired
dot GF Gr

m(ε) can then be expressed in this polaronic
representation

Im Gr
m(ε) =

∞∑
n=−∞

Ln

{
f (ε + nεp)Im G̃r

m(ε + nεp)

+ [1 − f (ε − nεp)]Im G̃r
m(ε − nεp)

}
, (3)

where G̃r
m(ε) is the dot retarded GF with respect to the

Hamiltonian H̃e, n ∈ Z, f (ε) = ∑
α �̃αfα(ε)/�̃, and Ln =

exp{−g[1 + 2N (εp)]}{[N (εp) + 1]/N (εp)}n/2In(x) with x =
2g

√
N (εp)[N (εp) + 1]. Here we have introduced the modified

Bessel function of the first kind In(x) and the Bose distribution
function N (εp). Ln is actually the Franck-Condon factor which
characterizes the envelope of vibrational sidebands. At zero
temperature, it reduces to Ln = e−ggn/n! for n � 0, otherwise
Ln = 0. We emphasize that the phonon (Tp) and electron (Te)
temperatures24 respectively entering N (εp) and fα(ε) can be
different, since for such EP-coupled systems, a global thermal
equilibrium between the electrons in the bulk leads and local
phonons in the dot region can usually not be reached when a
current is present.24

To calculate the dot GF G̃r
m(ε), we employ the EOM

approach12,15 generalized to involve the fourfold electronic
states in CNT QDs with the SO coupling. Here the EOM
takes into account all relevant tunneling processes and can
be applied straightforwardly for the electron subsystem H̃e

already decoupled from the phonon one. We finally obtain the
dot GF as12,15

G̃r
m(ε) =

4∏
j=1

P −1
jm (ε)

[
4∏

j=2

Pjm(ε) + Ũ

4∏
j=3

Pjm(ε)
∑
m′

′
nm′

+ Ũ 2P4m(ε)
∑
m′,m′′

′
nm′nm′′ + Ũ 3

∑
m′ ,m′′ ,

m′′′

′
nm′nm′′nm′′′

]
,

(4)

where the primes above three summations mean m′ �= m, m′ �=
m′′ �= m, and m′ �= m′′ �= m′′′ �= m, respectively, Pjm(ε) =
ε − ε̃m − (j − 1)Ũ + i�̃, and nm = 〈n̂m〉H̃e

= − 1
π

∫
dε f (ε)

Im G̃r
m(ε). G̃r

m(ε) can thus be self-consistently calculated.

III. RESULTS AND DISCUSSIONS

In the numerical results presented below, we fix Ũ = 5εp =
40�̃ = 0.1D with the lead half bandwidth D = 1, and apply a
symmetric source-drain bias voltage V . The dot levels ε̃m are
measured from the equilibrium Fermi level μ = 0, which lies
at the middle of the band. In typical experiments, the dot level
and hence the electron occupancy on the dot are tuned by an
applied gate voltage. We thus introduce a renormalized gate
voltage Vg ≡ 1/2 − ε̃d/Ũ to mimic the number of electrons in
the considered shell, i.e., a continuous tuning of the electron
occupancy from 0 to 4 is achieved through continuously
varying Vg from 0 to 4.

When the SO coupling is negligible, the electronic states
of the CNT QD are fourfold degenerate. Consecutive fill-
ing of these states by tuning the gate voltage yields the
fourfold periodicity of Coulomb diamonds and vibrational
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sidebands in the low-temperature conductance map, as shown
in Fig. 1. In this figure, the edge lines of the Coulomb
diamonds are zero-phonon bands corresponding to electronic
tunnelings without invoking phonons, and the lines parallel
to the edges are vibrational emission sidebands arising from
tunneling processes mediated by emission of phonons. While
multiple-phonon processes are exponentially suppressed for
weak EP coupling [Fig. 1(a)], they become dominant in the
strong-coupling regime where the conductance at low bias is
Franck-Condon blockaded [Fig. 1(b)]. Further asymmetrically
tuning the dot-lead couplings can suppress the conductance
lines with positive (or negative) slope, leading to a shift of
the Coulomb diamond tips between positive and negative bias
[Fig. 1(c)]. These features agree well with the experiment4

and are well understood. Additionally, Vg-independent steps
at V = ±nεp are also exhibited in Figs. 1(a)–1(c). These
steps, generated by phonon-emitted off-resonant tunnelings
due to the QD level broadening, have not been observed in the
experiment4 because they are already smeared out, even at the
experimental base temperature T0 ∼ 0.1εp [Fig. 1(d)].

FIG. 1. (Color online) Differential conductance G ≡ dI/dV vs
gate voltage Vg and source-drain bias V . (a) g = 1, Tp(e) = 0, �̃L =
�̃R; (b) g = 5, Tp(e) = 0, �̃L = �̃R; (c) g = 5, Tp(e) = 0, �̃L = 0.1�̃R;
(d) g = 3, Tp(e) = 0.1εp , �̃L = �̃R .

The most striking and not understood observation of
the experiment4 is the appearance of vibrational absorption
sidebands within the Coulomb diamonds as the experimental
cryostat temperature is increased. This feature is absent in pre-
vious theoretical simulations9 assuming thermal equilibrium
between electrons and phonons. However, such an equilibrium
may actually be broken due to (i) the fact that the phonon
subsystem is easier to warm up since it has a relatively small
heat capacity at low temperature and (ii) the nonequilibrium
phonon generation by electronic transport.25 The negative
differential conductance observed in the experiment4 may also
suggest the presence of current-excited phonons with even
higher energy26 which can decay into the relevant stretching
mode due to anharmonic effects.27 For these reasons, a phonon
temperature Tp higher than the electron temperature Te is ex-
pected during the heating process of the device. Granted these,
our theory reproduces the experimental thermal evolution
of the conductance map, with evident absorption sidebands
developed in the diamonds before the electron temperature
completely smears out all the features [Figs. 2(a)–2(c)]. These
sidebands result from phonon-absorbed tunnelings which take
place because thermal phonons are available at an elevated
phonon temperature. Unlike the emission sidebands, the

FIG. 2. (Color online) (a)–(c) Thermal evolution of conductance
map, Tp(e)/εp = 0.35(0.11) (a), 0.7(0.15) (b), and 1.0(0.19) (c), for
�̃L = �̃R . (d) Conductance map at Tp(e)/εp = 0.7(0.15) for �̃L =
0.1�̃R . The EP coupling is fixed at g = 3.
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absorption ones of positive and negative slopes, corresponding
to a given electronic state, are due to the same tunneling
processes. They thus have the same intensity even for strongly
asymmetric dot-lead couplings [Fig. 2(d)]. Our results here are
also consistent with the experimental argument.4

More interestingly, while all the Coulomb diamonds
demonstrate identical emission sidebands, the absorption
sidebands inside the empty (〈n̂〉 = 0) and fully filled (〈n̂〉 =
4) diamonds are higher in intensity than those inside the
partially filled (〈n̂〉 = 1–3) ones [see Figs. 2(a)–2(d)]. This
phenomenon is related to the destructive superposition of
electron and hole states, which will become apparent by

FIG. 3. (Color online) (a)–(c) Thermal evolution of the dot EDOS
for different Vg . The black, blue (dark gray), and red (lighter
gray) arrows indicate zero-phonon band, emission, and absorption
sidebands, respectively. (d) Spectral weight of absorption sidebands
in ρd (ε) as a function of Tp . The EP coupling is fixed at g = 3 and
�̃L = �̃R is used throughout.

investigating the local EDOS ρd (ε). Figures 3(a)–3(c) present
thermal evolutions of this quantity for three Vg values represen-
tative of the empty, partially filled, and fully filled diamonds,
respectively. In the local EDOS, the zero-phonon bands lie at
ε = ε̃m + (j − 1)Ũ , j = 1–4, representing electron or hole
states if they are below or above the Fermi level. These
bands produce vibrational sidebands through phonon-emitted
or phonon absorbed processes. For electron (hole) states, the
absorption and emission sidebands are respectively on the

FIG. 4. (Color online) Conductance map for g = 3, Tp(e)/εp =
0.6(0.05), and �̃L = �̃R , with SO coupling �/εp = 0.4 (a), 1.0 (b),
and 1.5 (c). (d) Two lines cut at V = 0 in (a) and (c), respectively. The
black arrows denote the zero-phonon bands. (e) Schematic diagrams
of relevant tunneling processes for absorption sidebands marked by
1, 2, 3, and 4 in (d).
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high- (low-) and low- (high-) energy side of the zero-phonon
bands. For phonon-assisted transport through the CNT QD
under not so large source-drain biases, only the local EDOS
near the Fermi level is relevant. In this regime, the absorption
sidebands in Figs. 3(a)–3(c) can be respectively attributed
to phonon-absorbed hole states, mixed electron-hole states,
and electron states, while the emission sidebands are always
through phonon-emitted pure electron or hole states. The
mixture of electrons and holes for absorption sidebands in
the partially filled case [e.g., Fig. 3(b)] is actually a destructive
superposition since it significantly reduces the spectral weight
as compared with the empty and fully filled cases [Fig. 3(d)].
Considering further the equivalence between electron and hole
transport, the different (equivalent) intensities of absorption
(emission) sidebands for different diamonds in the maps
Figs. 2(a)–2(d) are thus understandable.

For small-diameter CNTs, the SO coupling � is rather
strong and its interplay with vibrational effect can then be
addressed. In this regime, the phonon-assisted tunnelings
can take place through two split Kramers doublets, thereby
manifesting themselves as split vibrational sidebands at � <

εp [Fig. 4(a)]. The adjacent split sidebands due to tunnelings
through different Kramers doublets are merged when � = εp

where the energy difference of such tunnelings is compensated
by emission or absorption of a phonon [Fig. 4(b)], and split
further for stronger SO coupling � > εp resulting in a much
more complicated pattern [Fig. 4(c)]. Remarkably, though
two split absorption sidebands have nearly equal intensities
for � < εp, the Coulomb blockade effect can make them
quite different when one of them crosses a zero-phonon band
for � > εp [seen explicitly in Fig. 4(d)]. This is because
in the latter case the split absorption sidebands are related

to two electronic states with significantly different electron
populations in the dot. To illustrate this scenario, we trace the
� evolution of one representative split pair marked by 1, 2,
3, and 4 with relevant tunneling processes shown in Fig. 4(e).
The tunneling 4 is strongly suppressed by Coulomb repulsion
of the electron already populating the lower Kramers doublet.
This explains the lower intensity of sideband 4 as compared
with sidebands 1, 2, and 3. Similar analyses are also applicable
to other split absorption sidebands. We emphasize finally that
this effect is unique to absorption sidebands and absent in
emission ones.

IV. CONCLUSION

In summary, we have studied the phonon-assisted transport
through suspended CNT QDs. It is shown that the appearance
of the thermally induced vibrational absorption sidebands
in the experiment4 is due to the EP nonequilibrium. These
absorption sidebands are further predicted to be significantly
suppressed in the partially filled Coulomb diamonds. We also
take into account the effect of SO coupling for small-diameter
CNTs, thereby demonstrating the splitting of all vibrational
sidebands and the Coulomb blockade of some absorption side-
bands in the strong SO coupling regime. Further experiments
are encouraged to check these predictions.
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