Physics > Optics

Polarization-dependent transformation of a paraxial beam upon reflection and refraction: a real-space approach

Aleksandr Bekshaev

(Submitted on 7 Jul 2011 (v1), last revised 30 Jul 2011 (this version, v3))
We analyze the paraxial beam transformation upon reflection and refraction at a plane boundary. In contrast to the usual approach dealing with the beam angular spectrum, we apply the continuity conditions to explicit spatial representations of the electric and magnetic fields on both sides of the boundary. It is shown that the polarization-dependent distortions of the beam trajectory (in particular, the "longitudinal" Goos-H""anchen shift and the "lateral" Imbert-Fedorov shift of the beam center of gravity) are directly connected to the incident beam longitudinal component and appear due to its transformation at the boundary.

Comments: 10 pages, 1 figure. Formulae (32), (33), footnote 2 and Ref. 27 are added, some sentences are corrected
Subjects: Optics (physics.optics)
Cite as: arXiv:1107.1349 [physics.optics] (or arXiv:1107.1349v3 [physics.optics] for this version)

Submission history

From: Aleksandr Bekshaev [view email]
[v1] Thu, 7 Jul 2011 11:31:18 GMT (114kb)
[v2] Fri, 15 Jul 2011 10:21:24 GMT (119kb)
[v3] Sat, 30 Jul 2011 03:07:10 GMT (120kb)

Which authors of this paper are endorsers?

Download:

- PDF only

Current browse context: physics.optics
< prev | next > new | recent | 1107

Change to browse by: physics

References \& Citations

- NASA ADS

Bookmark(what is this?)

Link back to: arXiv, form interface, contact.

