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Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical

aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase difference of binary

phase Fresnel zone plates, the topological charge of vortex beam and the degree of polarization of incident beam on the

intensity distribution and degree of coherence in the focal plane are investigated in detail. It is shown that elliptical

light spots and the flat top beam can be obtained by selecting certain parameters. Studies of degree of coherence reveal

that the degree of coherence between x and y components of the electric field, which is zero in the source plane, is

improved in the focal plane for vortex beam, but it is hardly changed for the nonvortex beam. It is also proved that

any two of the three electric field components Ex, Ey and Ez are completely coherent everywhere in the focal region if

the incident light beam is linearly polarized.
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1. Introduction

In recent years, the focusing properties of the
beams focused by a high numerical aperture (NA)
objective have attracted much attention due to their
potential applications in optical data storage, mi-
croscopy, material processing, the manipulation of
particles etc.[1−6] Therefore, there has been much re-
search on tight focusing of different kinds of beams,
such as cylindrical vector beams, elliptical symmetry
beams, linearly polarized beams and spirally polar-
ized beams.[7−10] There are also a few papers con-
cerning tight focusing of partially polarized vortex
beams. Vortex beams carrying orbital angular mo-
mentum (OAM) have attracted many researchers due
to their potential applications in optical information
encoding and transmission, i.e., the topological charge
associated with OAM of the vortex beams can be
viewed as the information carrier.[11−16] In addition,
a phase Fresnel zone plate (FZP) is an important fo-
cusing device especially in confocal microscopy and
high resolution lithography.[17] Some interesting work
about the use of binary phase FZP with a large NA

has been reported in recent years.[18,19]

In the present paper, electromagnetic Laguerre–
Gaussian (LG) beam is taken as an example to analyse
the focusing properties of partially polarized vortex
beam focused by a high NA phase FZP. We analyse
the effects of the numerical apertures of and phase dif-
ference of binary phase FZPs, the topological charge
of vortex beam and the degree of polarization of in-
cident beam on intensity distribution and degree of
coherence in the focal plane.

2. Theoretical model

We first consider the focusing of a linearly x-
polarized beam by a high NA phase FZP. Accord-
ing to the classic paper by Wolf,[20] the electric field
E(r, ϕ, z) in the focal region can be expressed as[21]

E(r, ϕ, z)

=


Ex

Ey

Ez


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= − ikf

2π

∫ α

0

∫ 2π

0

A(θ, φ)B(θ)C(θ) sin θ exp(ikz cos θ)

× exp[ikr sin θ cos(φ − ϕ)]

×


cos2 φ cos θ + sin2 φ

sinφ cos φ(cos θ − 1)

sin θ cos φ

 dφdθ, (1)

where r, ϕ, and z are the cylindrical coordinates of
an observation point, as shown in Fig. 1; k(= 2π/λ)
is a wave vector; f is a focal length; B(θ) is a factor
accounting for the energy conservation in the trans-
mission of field through the focusing system; C(θ) is a
phase transfer function; A(θ, φ) is a pupil apodization
function in the surface of phase FZP, which is related
to the electric field of the incident beam.

Fig. 1. Schematic diagram of the tight focusing system.

A partially polarized vortex beam can be simply
expressed as the superposition of two orthogonal lin-

early polarized beams that have an uncertain and ran-
dom phase difference, i.e.,

E(θ, φ) = [Ax(θ)ex + Ay(θ)ey] exp(imφ), (2)

where m is the topological charge of the vortex beam;
ex and ey are unit vectors along the x and y directions,
respectively; Ax(θ) and Ay(θ) are Cartesian compo-
nents of the complex electric vector in the source
plane. To illustrate the behaviour of the intensity dis-
tribution of partially polarized vortex beam in the fo-
cal region, we apply the theory to a particular case.
We assume that the field amplitude in the source plane
is of an LG mode and is expressed as

Aj(r) = E0
j

(√
2r

ω0

)|m|

exp
(
− r2

ω2
0

)
, j = x, y, (3)

where E0
j [=

∣∣E0
j

∣∣ exp(iψj)] is the characteristic com-
plex amplitude with a random phase ψj and ω0 is
the beam size in the source plane. Under the sine
condition,[21] we have r = f sin θ so that the pupil
apodization function of the LG beam can be written
as

Aj(θ) = E0
j

(√
2f sin θ

ω0

)|m|

exp
(
−f2 sin2 θ

ω2
0

)
.

(4)
According to Eq. (1), the electric field in the focal

region when a phase FZP is illuminated by partially
polarized vortex beam can be calculated as

E(r, ϕ, z) =


Ex

Ey

Ez

 = − ikf

2π

∫ α

0

∫ 2π

0

B(θ)C(θ) sin θ exp(ikz cos θ) exp[ikr sin θ cos(φ − ϕ)]

×


Ax(θ)(cos2 φ cos θ + sin2 φ) + Ay(θ) sin φ cos φ(cos θ − 1)

Ax(θ) sin φ cos φ(cos θ − 1) + Ay(θ)(sin2 φ cos θ + cos2 φ)

sin θ(Ax(θ) cos φ + Ay(θ) sin φ)

 exp(imφ)dφdθ. (5)

Substituting Eq. (4) into Eq. (5), the x, y and z components of the electric field in the focal region can be
simplified into

Ej(r, ϕ, z) = Exj(r, ϕ, z) + Eyj(r, ϕ, z), j = x, y , z, (6)

where Ekj(r, ϕ, z) (k = x, y) is the j th component of the focused electric field generated by the k-component
of the electric field of the incident beam. They can be expressed as

Exx(r, ϕ, z) = − i(1−m)kf

2

∫ α

0

Ax(θ)B(θ)C(θ) sin θ exp(ikz cos θ){(1 + cos θ)

×J−m(kr sin θ) exp(imϕ) +
1
2
(1 − cos θ)[J−(m+2)(kr sin θ)

× exp[i(m + 2)ϕ] + J−(m−2)(kr sin θ) exp[i(m − 2)ϕ]]}dθ, (7)
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Eyx(r, ϕ, z) = − i−mkf

4

∫ α

0

Ay(θ)B(θ)C(θ) sin θ exp(ikz cos θ)(1 − cos θ){J−(m+2)(kr sin θ)

× exp[i(m + 2)ϕ] − J−(m−2)(kr sin θ) exp[i(m − 2)ϕ]}dθ, (8)

Exy(r, ϕ, z) = − i−mkf

4

∫ α

0

Ax(θ)B(θ)C(θ) sin θ exp(ikz cos θ)(1 − cos θ){J−(m+2)(kr sin θ)

× exp[i(m + 2)ϕ] − J−(m−2)(kr sin θ) exp[i(m − 2)ϕ]}dθ, (9)

Eyy(r, ϕ, z) = − i(1−m)kf

2

∫ α

0

Ay(θ)B(θ)C(θ) sin θ exp(ikz cos θ){(1 + cos θ)

×J−m(kr sin θ) exp(imϕ) − 1
2
(1 − cos θ)[J−(m+2)(kr sin θ)

× exp[i(m + 2)ϕ] + J−(m−2)(kr sin θ) exp[i(m − 2)ϕ]]}dθ, (10)

Exz(r, ϕ, z) = − i−mkf

2

∫ α

0

Ax(θ)B(θ)C(θ) sin2 θ exp(ikz cos θ){J−(m+1)(kr sin θ)

× exp[i(m + 1)ϕ] − J−(m−1)(kr sin θ) exp[i(m − 1)ϕ]}dθ, (11)

Eyz(r, ϕ, z) =
i−(m−1)kf

2

∫ α

0

Ay(θ)B(θ)C(θ) sin2 θ

× exp(ikz cos θ){J−(m+1)(kr sin θ) exp[i(m + 1)ϕ] + J−(m−1)(kr sin θ)

× exp[i(m − 1)ϕ]}dθ. (12)

The second-order coherence properties of partially polarized beam may be characterized by the 3×3 electric
cross-spectral density matrix[22]

W (r1, r2, z) =


Wxx(r1, r2, z) Wxy(r1, r2, z) Wxz(r1, r2, z)

Wyx(r1, r2, z) Wyy(r1, r2, z) Wyz(r1, r2, z)

Wzx(r1, r2, z) Wzy(r1, r2, z) Wzz(r1, r2, z)

 , (13)

where
Wjk(r1, r2, z) =

〈
E∗

j (r1, ϕ1, z)Ek(r2, ϕ2, z)
〉
, j, k = x, y, z, (14)

r1, r2 and ϕ1, ϕ2 are the modulus and the angles of
the transversal position vectors r1, r2 located in the
observed plane respectively. The asterisk refers to the
complex conjugate. Angle brackets denote an average
monochromatic realization of the field. Substituting
Eq. (6) into Eq. (14), we obtain

Wjk(r1, r2, z)

=
〈
E∗

xj(r1, ϕ1, z)Exk(r2, ϕ2, z)
〉

+
〈
E∗

xj(r1, ϕ1, z)Eyk(r2, ϕ2, z)
〉

+
〈
E∗

yj(r1, ϕ1, z)Exk(r2, ϕ2, z)
〉

+
〈
E∗

yj(r1, ϕ1, z)Eyk(r2, ϕ2, z)
〉
. (15)

Because the phase difference (ψy − ψx) is
uncertain and random for partially polarized
beam, we have

〈
E∗

xj(r1, ϕ1, z)Eyk(r2, ϕ2, z)
〉

=〈
E∗

yj(r1, ϕ1, z)Exk(r2, ϕ2, z)
〉

= 0 in Eq. (15). Thus,
the element of the cross-spectral density matrix can
be written as

Wjk(r1, r2, z)

=
〈
E∗

xj(r1, ϕ1, z)Exk(r2, ϕ2, z)
〉

+
〈
E∗

yj(r1, ϕ1, z)Eyk(r2, ϕ2, z)
〉
. (16)

By letting r1 = r2 = r, ϕ1 = ϕ2 = ϕ in Eq. (16)
and using Eqs. (7)–(12), we can finally obtain the
expressions for the intensity distribution and the de-
gree of coherence in the focal region, respectively, as
follows:[22]

It(r, ϕ, z)

= Wxx(r, r, z) + Wyy(r, r, z) + Wzz(r, r, z)

= Ix(r, ϕ, z) + Iy(r, ϕ, z) + Iz(r, ϕ, z), (17)

µjk(r, ϕ, z)

= Wjk(r, r, z)/
√

Wjj(r, r, z)Wkk(r, r, z),

j, k = x, y, z. (18)

The complex degree of coherence µjk(r, ϕ, z) (j, k =
x, y, z) is a parameter that indicates the correlation
between any two of the three orthogonal electric field
components at an arbitrary point r.
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3. Results and discussion

To perform some numerical calculations, the co-
efficients B(θ) and C(θ) in Eq. (1) will be given.
B(θ) = cos−3/2 θ is given for an FZP,[23] and C(θ)
can be expressed as[24]

C(θ)

=

 exp[i(∆ − δ)] exp(iπ), (θm−2 ≤ θ ≤ θm−1),

exp(−iδ) exp(iπ), (θm−1 ≤ θ ≤ θm),

(19)

where m = 2, 4, . . . ,M, M is the total zone number,
θ0 = 0, θM = α, δ = kf/ cos θ − kf , ∆ is the phase
difference between the two adjacent zones; θm is the
zone angle at which zone radius is seen from the focus
and defined by[23]

sin θm =

√
mπ(2kf + mπ)
(kf + mπ)

. (20)

In the following investigation, it is assumed that
the zone number M = 16 (i.e., NA is 0.996) with
∆ = π, ω0 = 1 µm and f = 0.5 µm.

Figure 2 shows the influence of
∣∣E0

y

∣∣ on the to-
tal intensity It in the focal plane with m = 1. It
can be seen that the pattern of intensity distribution
changes with

∣∣E0
y

∣∣. Specifically, with
∣∣E0

y

∣∣ changing
from

∣∣E0
y

∣∣ =
∣∣E0

x

∣∣ to
∣∣E0

y

∣∣ 6=
∣∣E0

x

∣∣, the pattern of It

changes from a circular focal spot to elliptical focal
spots as shown in Fig. 2(b).

Figure 3 shows the effects of varying m, NA and
∆ on the total intensity distribution in the focal plane.
It is found that the core intensity of the vortex beam
(m = 1, for example) is nonzero as shown in Fig. 3(a).
This is because there is a zeroth order Bessel function
of the first kind, which has a maximum value near the
optical axis, in the expression of Ez(r, ϕ, z) for m = 1.
On the other hand, the intensity distribution of the
focused field composed of x and y components (i.e.,
Ix + Iy) has a dark core for m = 1. As a result, this
dark hole is just filled in by the intensity of the focused
field of z component, leading to the generation of a flat
top beam that has many applications. The influence
of varying NA on the total intensity distribution in the
focal plane is presented in Fig. 3(b). It is shown that
with the increase of NA, the central intensity becomes
larger but the focal spot becomes smaller, indicating
that the increase of NA leads to a stronger longitudi-
nal component and a tighter focused transverse field.
Figure 3(c) shows the influence of varying ∆ on the to-
tal intensity distribution in the focal plane. It is found

that with ∆ changing from 0.5π to π, the total inten-
sity increases. This is because when ∆ = π, the beams
from the adjacent zones arrive at the focal plane ex-
actly in phase and they interfere fully constructively
there.

Fig. 2. (colour online) Effects of varying E0
y on It in the

focal plane with m = 1 and
˛

˛E0
y

˛

˛ = 1 (a) and 0.75 (b).

The parameters for calculation are
˛

˛E0
x

˛

˛ = 1, λ = 633 nm,

ω0 = 1 µm, f = 0.5 µm, ∆ = π and M = 16.

Now we turn to considering the modulus of the
degree of coherence in the focal plane. It is interest-
ing to discuss the degree of coherence of a partially
polarized vortex beam, because the x and the y com-
ponents of the partially polarized beam are completely
incoherent (i.e., |µxy| = 0) in the source plane. After
being focused, the x and the y components of the
partially polarized beam will produce their new com-
ponents. Therefore, the aforementioned incoherence
is expected to be improved in the focal plane. The dis-
tribution of spectral degree of coherence of a focused
partially polarized vortex beam in the focal plane is
illustrated in Figs. 4(a)–4(c). Since the distribution
of |µxy| has not the rotation symmetry in the focal
plane (i.e., Eq. (18) is related to ϕ), it is plotted by
the contour graphics. A comparison among Figs. 4(a),

114202-4



Chin. Phys. B Vol. 20, No. 11 (2011) 114202

Fig. 3. Intensity distributions of a stochastic electromag-

netic vortex beam in the focal plane for different values of

topological charge m, numerical aperture NA and phase dif-

ference ∆. (a), (b) ∆ = 0.5π, (a), (c) NA = 0.996,
˛

˛E0
y

˛

˛ = 1.

The other parameters are the same as those in Fig. 2.

4(b) and 4(c) shows that there exist high contrasts
in distributions of |µxy|. For instance, most of |µxy|
take their minima in Fig. 4(b), but take their max-
ima in Figs. 4(a) and 4(c). Moreover, the patterns of
|µxy| distribution are very different in the geometrical
focus neighbourhood, which may be related to their
different patterns of intensity distribution. Therefore,
the corresponding distributions of intensity Ix + Iy

are plotted in Figs. 4(d)–4(f). Comparing Fig. 4(a)
with Fig. 4(d), it is found that |µxy| equals zero in the
bright central area. Because the electric field outside
the focal spot in the focal plane is so weak that it can
be considered negligible, we only need to consider the
|µxy| in the geometrical focus neighbourhood. In this
sense, the x and the y components of the focused field
are incoherent for nonvortex beam (i.e., m = 0). In

other words, the incoherence between the x and the y

components of the electric field in the source plane is
hardly changed in the focal plane for nonvortex beams.
Comparing Fig. 4(b) and Fig. 4(e), it is seen that |µxy|
takes its intermediate values in the area of bright ring.
In Figs. 4(c) and 4(f), it is found that |µxy| is close to
its lower limit in the area of bright ring, but reaches
its upper limit in the secondary bright central area.
It is evident that after being focused, the coherence
between the x and the y components of the electric
field is improved for vortex beams.

Figure 5 shows contour distributions of |µxz| and
|µyz| in the focal plane for m = 1. It is seen that |µxz|
and |µyz| are oscillating functions of (r, ϕ). Further-
more, it is found that there exists some relation be-
tween |µxz| and |µyz|. Specifically, the pattern of |µyz|
distribution can be obtained by rotating the pattern
of |µxz| distribution about z axis through an angle of
90◦, i.e.,

|µxz(r, ϕ + π/2, z)| = |µyz(r, ϕ, z)| . (21)

In fact, Eq. (21) can be derived from the fore-
going equations under the condition of

∣∣E0
y

∣∣ =
∣∣E0

x

∣∣.
Substituting ϕ + π/2 for ϕ in Eqs. (7)–(12), we have

Exx(ϕ + π/2) = exp(imπ/2)Eyy(ϕ),

Exz(ϕ + π/2) = − exp(imπ/2)Eyz(ϕ)

Eyx(ϕ + π/2) = − exp(imπ/2)Exy(ϕ),

Eyz(ϕ + π/2) = exp(imπ/2)Exz(ϕ), (22)

and substituting into Eq. (18), we can obtain Eq. (21).
Figure 6 shows the effects of numerical apertures

of and the phase difference of binary phase FZPs on
|µxy| distribution of partially polarized vortex beams
in the focal plane. It is shown that the dark area,
where |µxy| is close to zero, is the largest in Fig. 6(b)
and is the smallest in Fig. 6(c). This indicates that
the coherence between the x and the y components of
the electric field can been improved by increasing the
numerical aperture of binary phase FZP or reducing
the phase difference of binary phase FZP from π.

Finally, we turn to considering a special case of∣∣E0
y

∣∣ = 0 (i.e., the incident light beam is linearly po-
larized). It is found that any two of three electric field
components Ex, Ey and Ez are completely coherent
everywhere in the focal plane in this case, i.e.,

|µjk(r, ϕ, z)| = 1, (j, k = x, y, z). (23)
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Fig. 4. (colour online) Contour distributions of |µxy | in the focal plane for different values of topological charge m and

the normalized intensity distribution Ix + Iy corresponding to |µxy |. (a)–(c) |µxy |, (d)–(f) Ix + Iy . (a), (d) m = 0, (b), (e)

m = 1, (c), (f) m = 2.
˛

˛E0
y

˛

˛ = 1. The other parameters are the same as those in Fig. 2.

Fig. 5. (colour online) Contour distributions of |µxz | and |µyz | in the focal plane for m = 1. (a) |µxz |, (b) |µyz |,
˛

˛E0
y

˛

˛ = 1.

The other parameters are the same as those in Fig. 2.

Fig. 6. (colour online) Effects of NA and ∆ on
˛

˛µjk

˛

˛ distribution of partially polarized vortex beams in the focal plane.

m = 2,
˛

˛E0
y

˛

˛ = 1. (a) ∆ = π, NA=0.996. (b) ∆ = π, NA=0.959. (a) ∆ = 0.2π, NA=0.996. The other parameters are the

same as those in Fig. 2.

Substituting
∣∣E0

y

∣∣ = 0 into Eq. (3), we obtain

Eyj(r, ϕ, z) = 0, (j = x, y, z). (24)
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Substituting this into Eqs. (16) and (18), we have

|µjk(r, ϕ, z)| =

∣∣〈E∗
xj(r, ϕ, z)Exk(r, ϕ, z)

〉∣∣√〈
E∗

xj(r, ϕ, z)Exj(r, ϕ, z)
〉
〈E∗

xk(r, ϕ, z)Exk(r, ϕ, z)〉

=

∣∣E∗
xj(r, ϕ, z)Exk(r, ϕ, z)

∣∣√(
E∗

xj(r, ϕ, z)Exk(r, ϕ, z)
)
(E∗

xk(r, ϕ, z)Exj(r, ϕ, z))
.

According to Eqs. (4) and (5), the calculations of Exk(r, ϕ, z) and Exj(r, ϕ, z) are independent. Thus, we
have

|µjk(r, ϕ, z)| =

∣∣E∗
xj(r, ϕ, z)Exk(r, ϕ, z)

∣∣√(
E∗

xj(r, ϕ, z)Exk(r, ϕ, z)
) (

E∗
xj(r, ϕ, z)Exk(r, ϕ, z)

)∗ =

∣∣E∗
xj(r, ϕ, z)Exk(r, ϕ, z)

∣∣√∣∣E∗
xj(r, ϕ, z)Exk(r, ϕ, z)

∣∣2 = 1.

That is exactly Eq. (23), the equation we set out
to prove.

4. Conclusion

We derive the expression for the electric field of
the tightly focused partially polarized vortex beam ac-
cording to the vectorial Debye theory. The effects of
the numerical apertures of and phase difference of bi-
nary phase FZPs, the topological charges of vortex
beam, and the degree of polarization of incident beam
on the intensity distribution and spectral degree of
coherence in the focal region are investigated in great
detail. It is shown that elliptical light spots can be
obtained in the focal plane by selecting properly the
degree of polarization of the incident beam and a flat
top beam can be obtained in the focal plane when the
topological charge of the vortex beam m = 1. The
two special intensity distributions have wide applica-
tions. Studies of degree of coherence reveal that the
degree of coherence between x and y components of
the electric field, which is zero in the source plane, is
improved in the focal plane for vortex beam, but it
is hardly changed for nonvortex beam. Moreover, it
is found that the pattern of |µyz| distribution can be
obtained by rotating the pattern of |µxz| distribution
about z axis through an angle of 90◦ if the high NA
phase FZP is illuminated by natural light. Finally, it
is proved that any two of the three electric field com-
ponents Ex, Ey and Ez are completely coherent ev-
erywhere in the focal plane if the incident light beam
is linearly polarized, which indicates that a linearly
polarized beam will not become a partially polarized
beam by resolving it into two orthogonal components
in practical applications.
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