2002 Vol. 37 No. 1 pp. 111-116 DOI:

Pressure-Induced Shifts of Energy Spectra of α -Al₂0₃: Mn⁴⁺

MA Dong-Ping, 1,2 CHEN Ju-Rong¹ and MA Ning³

- ¹ Department of Applied Physics, Sichuan University, Chengdu 610065, China
- 2 International Centre for Materials Physics, The Chinese Academy of Sciences, Shenyang 110015, China
- ³ Department of Computer Science, Sichuan University, Chengdu 610064, China (Received: 2001-6-11; Revised:)

Abstract: By making use of the diagonalization of the complete d³ energy matrix in a trigonally distorted cubic-field and the theory of pressure-induced shifts (PS) of energy spectra, the whole energy spectrum of α -Al₂0₃: Mn⁴⁺ and PS of levels have been calculated. All the calculated results are in excellent agreement with the experimental data. The comparison between the results of α -Al₂0₃: Mn⁴⁺ and ruby has been made. It is found that on one hand, R₁line and R_2 -line PS of α -Al $_2$ 0 $_3$: Mn $^{4+}$ and ruby are linear in pressure over 0 \sim 100 kbar, and their values of the principal parameter for PS are very close to each other. On the other hand, the sensitivities of R_1 -line and R_2 -line PS of α -Al₂O₃: Mn⁴⁺ are higher than those of ruby respectively, which comes mainly from the difference between the values of parameters at normal pressure of two crystals; moreover, the expansion of d-electron wavefunctions of α -Al₂O₃: Mn⁴⁺ with compression is slightly larger than the one of ruby, and the effective charge experienced by d-electrons of α -Al $_2$ O $_3$: Mn $^{4+}$ decreases with compression more rapidly than the one of ruby. In the final analysis, all these can be explained in terms of the facts that the two crystals are doped α -Al₂O₃ with two isoelectronic ions; the strengths of the crystal field and covalency of α -Al₂O₃: Mn⁴⁺ are larger than those of ruby respectively, due to the charge of Mn⁴⁺ to be larger than that of Cr³⁺.

PACS: 78.20. Hp, 71.70. Ch, 76.30Fc

Key words: crystal fields, energy spectrum, optical properties, high-pressure

effect, α -Al₂0₃: Mn⁴⁺

[Full text: PDF]

Close