2005 Vol. 44 No. 1 pp. 165-170 DOI:

Energy Spectrum of YAG: Cr³⁺ and Thermal Shifts of Its R Lines MA Dong-Ping^{1,2} and CHEN Ju-Rong¹

¹ Department of Applied Physics, Sichuan University, Chengdu 610065, China

(Received: 2004-11-30; Revised:)

Abstract: Traditional ligand-field theory has to be improved by taking into account both "pure electronic" contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, R_1 , R_2 , R'_3 , R'_2 , and R'_1 lines, U band, ground-state zero-field-splitting (GSZFS) and ground-state g factors as well as thermal shifts of R_1 line and R_2 line of YAG: Cr^{3+} have been calculated. The results are in very good agreement with the experimental data. In contrast with ruby, the octahedron of ligand oxygen ions surrounding the central Cr^{3+} ion in YAG: Cr^{3+} is compressed along the [111] direction. Thus, for YAG: Cr^{3+} and ruby, the splitting of $t_2^{34}A_2$ (or $t_2^{32}E$) has opposite order, and the trigonal-field parameters of the two crystals have opposite signs. In thermal shifts of R_1 and R_2 lines of YAG: Cr^{3+} , the temperature-dependent contributions due to EPI are dominant.

PACS: 71.70.Ch, 76.30.Fc, 78.20.Nv, 63.20.Mt Key words: improved ligand-field theory, electron-phonon interaction, Stokes shift, energy spectrum, thermal shift, g factor

[Full text: PDF]

 $^{^2}$ International Centre for Materials Physics, the Chinese Academy of Sciences, Shenyang 110015, China