2007 Vol. 47 No. 5 pp. 937-943 DOI:

Improved Ligand-Field Calculation of Energy Spectrum and R-Line Thermal Shift of MqO: Cr³⁺

ZHANG Zheng-Jie¹ and MA Dong-Ping²

¹ College of Information Engineering, Chengdu University of Technology, Chengdu 610059, China ² Department of Applied Physics, Sichuan University, Chengdu 610065, China (Received: 2006-6-6; Revised:)

Abstract: Traditional ligand-field theory has to be improved by taking into account both pure electronic contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, the R-line, $t_2^{32}T_1$ lines, t_2^2 (${}^{3}T_1$) $e^{4}T_2$, and t_2^2 (${}^{3}T_1$) $e^{4}T_1$ bands, ground-state g factor, four strain-induced level-splittings, and R-line thermal shift of Mg0: Cr^{3+} have been calculated. The results are in very good agreement with the experimental data. It is found that for Mg0: Cr^{3+} , the contributions due to electron-phonon interaction (EPI) come from the first-order term. In thermal shift of R-line of Mg0: Cr^{3+} , the temperature-dependent contribution due to EPI is dominant.

PACS: 71.70.Ch, 76.30.Fc, 78.20.Nv, 63.20.Mt Key words: improved ligand-field theory, electron-phonon interaction, energy spectrum, strain-induced splitting, thermal shift, g factor

[Full text: PDF]

Close