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In this paper, with the weak cross-Kerr nonlinearity, we first present a special experimental scheme called
controlled-path gate with which the realization of all possible bipartite positive-operator-value measurements
of two-photon polarization states may be nearly deterministic. Following the same technique, the realization of
quantum control gates, including the controlled-NOT gate, Fredkin gate, Toffoli gate, arbitrary controlled-U
gate, and even arbitrary multicontrolled-U gate, are proposed. The corresponding probabilities are 1 /2, 1 /8,
2 /23, etc., respectively. Only the coherent states are required but not any ancilla photons, and no coincidence
measurement are required, which results in these gates being scalable. The structures of these gates are very
simple, therefore we think they are feasible with the current experimental technology in optics.
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I. INTRODUCTION

In quantum computation, quantum control gates play a
very important role. It was proven that two-qubit unitary
gates and single-qubit gates are sufficient for universal quan-
tum computation �1�. In linear optics, many schemes are pro-
vided for the realization of two-qubit unitary gates, for ex-
ample controlled-NOT �CNOT� gates �2� or controlled-phase
gates �3�. However, some of these gates work on the coinci-
dence basis, which results in these gates not being scalable,
i.e., these gates cannot be used to realize multiqubit gates
and the universal computation. Moreover, all these gates are
probabilistic, which means that the probability of the realiza-
tion of universal computation may be tiny because so many
two-qubit unitary gates are required. For example, the quan-
tum Fredkin gate can be constructed by five CNOT gates and
some single-qubit gates �4�, and the probability of a CNOT

gate is only 1 /4 in linear optics �2�, so the probability of a
Fredkin gate is 4−5=9.8�10−4. To avoid this inefficiency,
more efficient even deterministic gates must be looked for.
Fortunately, with the weak cross-Kerr nonlinearity, a parity
projector �5� and a deterministic CNOT gate �6� has been
proposed, so the universal computation can be realized as
deterministic in principle. However, the universal computa-
tion and even a multiqubit gate may need too many CNOT

gates, therefore the structure may be too complex to be real-
ized in optics. Alternatively, it is interesting to look for some
multiqubit gates with simple structure, even though the prob-
ability is not unit. In this paper, we will present the quantum
control gates with very simple structure, and we think these
gates may be more feasible with the current experimental
technology.

This paper is organized as follows. In Sec. II, we first
propose a scheme of a gate that we call the controlled-path
�C-path� gate with the weak cross-Kerr nonlinearities, and
then we use this gate to realize all possible bipartite positive-

operator-value measurements �POVMs� of two-photon polar-
ization states. In addition, this technique is developed to re-
alize the CNOT gate, the Fredkin gate, the Toffoli gate, the
controlled-U �CU� gate, and even the multicontrolled-U
�MCU� gate. Section III contains the conclusion.

II. QUANTUM CONTROL GATE

Before we outline our schemes of quantum control gates,
we briefly review the useful weak cross-Kerr nonlinearity
which has been used in Refs. �5–8�. Suppose a nonlinear
weak cross-Kerr interaction between a signal state �photonic
qubit� ���=c1�0�+c2�1�+c2�2� and a coherent state ���. After
the evolution, the output state is

������ → c1�0���� + c2�1���ei�� + c2�2���ei2�� , �1�

where � is induced by the nonlinearity. Through a general
homodyne-heterodyne measurement of the phase of the co-
herent state, the signal state ��� will be projected into a defi-
nite number state or superposition of number states. Because
the measurement can be performed with high fidelity, the
projection is nearly deterministic. This technique was first
used to realize a parity projector �5�, and then a CNOT gate
�6�. It provides a new route to new quantum computation �7�.
The requirement for this technique is ���1 �7�, where � is
the amplitude of the coherent state. Even with the weak non-
linearity �� is small�, this requirement can be satisfied with
large amplitude of the coherent state. Then this requirement
may be feasible with current experimental technology. Our
schemes of quantum control gates also work with the weak
cross-Kerr nonlinearity.

A. C-path gate

First, we discuss the C-path gate. Here, we use the polar-
ization of photons as qubit and define the horizontally �ver-
tically� linear polarization �H���V�� as the qubit �0���1��. Con-
sider a two-qubit initially prepared in the state ���
=��H�1�H�2+��H�1�V�2+��V�1�H�2+	�V�1�V�2, where ���2*Electronic address: qlin@mail.ustc.edu.cn
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+ ���2+ ���2+ �	�2=1. In a C-path gate, the paths of the first
photon are controlled by the second photon. The experimen-
tal setup is shown in Fig. 1. The control photon is transmitted
through a balanced Mach-Zehnder �MZ� interferometer
formed by two polarizing beam splitters �PBS1,PBS2� which
let the photon �H� be passed and the photon �V� be reflected,
while the target photon is injected into a 50:50 beam splitter
�BS�. The two photons combined with a coherent state ���
interact with the cross-Kerr nonlinearities, such that a phase
shift will be induced in the coherent state. Suppose the con-
trol photon induces a controlled phase shift −�, while the
target photon induces a controlled phase shift �. Then the
input state ������ will evolve as follows:

1
�2

���H�1
S1�H�2 + ��H�1

S2�V�2 + ��V�1
S1�H�2 + 	�V�1

S2�V�2����

+
1
�2

���H�1
S2 + ��V�1

S2��H�2��e−i��

+
1
�2

���H�1
S1 + 	�V�1

S1��V�2��ei�� , �2�

where the superscripts S1 ,S2 denote the paths of the first
photon. Through a general homodyne-heterodyne measure-
ment �X homodyne measurement�, the two-photon state will
be projected into the following state:

��H�1
S1�H�2 + ��H�1

S2�V�2 + ��V�1
S1�H�2 + 	�V�1

S2�V�2. �3�

Here we only retain the case in which no phase shift is in-
duced in the coherent state, and the success probability is
Psucc

CP =1 /2. If a switch �S� which will exchange the two pho-
tons and a phase shift conditionally controlled by the homo-
dyne detection through a classical feedforward are applied,
this C-path gate is nearly deterministic, i.e., Psucc,max

CP =1. In
the same way, one can implement a multi-controlled-path

gate in which multiple qubits control the paths of the other
qubits.

This C-path gate is very useful in the quantum computa-
tion for the reason that many quantum control gates �for
example, the CNOT gate, the Fredkin gate, etc.� can be real-
ized by some operations performed in the different paths of
the target photons. These schemes of quantum control gates
will be discussed in the following. Now we discuss the first
use of this controlled-path gate. If we place a half wave plate
�HWP, set at 22.5° to the Hadamard gate� in the path of the
control photon, which is shown by the dashed line of Fig. 1,
the following state can be achieved:

1
�2

���H�1
S1 + ��H�1

S2 + ��V�1
S1 + 	�V�1

S2��H�2

+
1
�2

���H�1
S1 − ��H�1

S2 + ��V�1
S1 − 	�V�1

S2��V�2. �4�

If the detection of the control photon infers its polarization is
�H�, the initial state ��� has been transferred onto the follow-
ing state of a single photon in the Hilbert space of its polar-
ization and path states:

�
� = ��HS1� + ��HS2� + ��VS1� + 	�VS2� . �5�

The success probability is Psucc
CT =1 /2. If a classical feedfor-

ward phase shift � is induced to the path S2 when the detec-
tion infers the polarization of the control photon is �V�, the
success probability will increase to 1.

The transformation ���→ �
� is crucial for the realization
of all possible bipartite POVMs of two-photon polarization
states in Ref. �9�. In their scheme, a special three-photon
entangled state created by a quantum Fredkin gate and a
teleportation process of five photons are required for this
transformation. It is evident that our scheme is better than
their scheme in the amount of resource, the complexity of the
operations, and the great advantage of our scheme is that the
success probability is nearly unity, which makes the realiza-
tion of all possible bipartite POVMs of two-photon polariza-
tion states nearly deterministic.

B. CNOT gate

Secondly, we discuss the CNOT gate. Suppose two photons
initially prepared in the state ���, and the CNOT gate can be
described by the following transformation:

��� → ��H�1�H�2 + ��H�1�V�2 + ��V�1�V�2 + 	�V�1�H�2.

�6�

The experimental setup is shown in Fig. 2. Here the first
photon is the control photon which is transmitted through a
balanced MZ interferometer formed by two PBSs
�PBS1,PBS2�, while the target photon is also transmitted
through a balanced MZ interferometer formed by two BSs
�BS1,BS2� whose transmissivity �reflectivity� is T1 ,T2
�R1 ,R2�, respectively. A single-photon operation �x is per-
formed in one arm. With the cross-Kerr nonlinearities and an
X homodyne measurement associated with the classical feed-
forward, the following states can be achieved in the output,

FIG. 1. Controlled-path gate with weak cross-Kerr nonlinearity.
Assisted by the switch �S� and the phase shift conditional controlled
by the homodyne detection through a classical feedforward, this
gate is nearly deterministic. If the setups in the dashed line are used,
this gate can be used to realize all possible bipartite positive-
operator-value measurements of two-photon polarization states
nearly determinately.
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�T1R2���H�1�H�2 + ��H�1�V�2� + �R1T2���V�1�V�2

+ 	�V�1�H�2� , �7�

or

�R1T2���H�1�H�2 + ��H�1�V�2� + �T1R2���V�1�V�2

+ 	�V�1�H�2� . �8�

Compared with Eq. �6�, it is immediately apparent that the
CNOT operation is completed when the condition �T1R2
=�R1T2 is satisfied, and the success probability Psucc

CNOT

=2T1R2. It is easy to find that the maximum success prob-
ability is Psucc,max

CNOT =1 /2 when T1=R2=1 /2. Compared with
the scheme proposed by Nemoto et al. �6�, our scheme is
probabilistic but no ancilla photons are required.

C. Fredkin gate

Third, we discuss the Fredkin gate, which is also called
the controlled-SWAP gate. Consider a single photon �control
photon� in the state ���=��H�+��V� ����2+ ���2=1�, and two
photons �target photons� in the state ��= p1��+�+ p2��−�
+ p3�
+�+ p4�
−� ��i�pi�2=1�, where 	���� , �
��
 are the
Bell states. A Fredkin gate can be described by the following
transformation:

����� → ��H��p1��+� + p2��−� + p3�
+� + p4�
−�� + ��V�

��p1��+� − p2��−� + p3�
+� + p4�
−�� , �9�

that is, if the control photon is in the state �H�, the target two
photons are unchanged; while the control photon is in the
state �V�, a swap operation is implemented to the target two
photons. For the reason that only the singlet state ��−� is
antisymmetric while the other three Bell states are symmet-
ric, the SWAP operation only results in a phase shift � to the
state ��−� while the other states remain unchanged. Our
scheme of the Fredkin gate is shown in Fig. 3. The control
photon is transmitted through a balanced MZ interferometer
formed by two PBSs �PBS1,PBS2�, while the two target pho-

tons are transmitted through a balanced MZ interferometer
formed by two BSs �BS1,BS2 or BS3,BS4� whose transmis-
sivity �reflectivity� is T1 ,T2 or T3 ,T4 �R1 ,R2 or R3 ,R4�, re-
spectively. In addition, a balanced MZ interferometer �in the
dashed line of Fig. 3� formed by two BSs �BS5,BS6� associ-
ated with a phase shift � in one arm is required. The Hong-
Ou-Mandel interference in this MZ interferometer yields the
following transformation �14�:

��−� → − ��−���+���
��� → ��+���
��� . �10�

Compared with the above two schemes, we change the phase
shift induced by the control photon to be −2�, while the
phase shift is � for the two target photons. If the cross-Kerr
nonlinearities are used and we retain the case in which no
phase shift is induced in the coherent state, we will achieve
the following state in the output:

�T1R2R3T4��H��p1��+� + p2��−� + p3�
+� + p4�
−��

+ �R1T2T3R4��V��p1��+� − p2��−� + p3�
+� + p4�
−�� .

�11�

Compared with Eq. �9�, the Fredkin gate is realized when the
condition �T1R2R3T4=�R1T2T3R4 is satisfied. Then the suc-
cess probability is Psucc

Fredkin=T1R2R3T4. Hence the maximum
success probability is Psucc

Fredkin=1 /16 when T1=R2=R3=T4
=1 /2. Moreover, if a MZ interferometer, which is identical
to the MZ interferometer in the dashed line associated with a
phase shift � conditionally controlled by the homodyne de-
tection �the phase of the coherent state is �2�� through a
classical feedforward, is implemented in the outputs of BS2
and BS4, the probability may be Psucc,max

Fredkin =1 /8.
Now we compare our scheme of Fredkin gate with the

previous schemes. In 1989, Milburn used the cross-Kerr non-
linearities to realize the Fredkin gate �10�, however, its cross-

FIG. 2. CNOT gate with the weak cross-Kerr nonlinearity. As-
sisted by a classical feedforward, this gate can be implemented with
the probability 1 /2.

FIG. 3. Fredkin gate with the weak cross-Kerr nonlinearities.
The setups in the dashed line will complete the transformation
��−�→−��−�; ��+���
���→ ��+���
���. Associated with the non-
linearities and appropriate transmissivities of four beam splitters,
the Fredkin gate is realized with the probability 1 /16. If some ad-
ditional setups are used, the probability will increase to 1 /8. For
details, see text.
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Kerr nonlinearities operate on a single photon level, so it
requires huge nonlinearities, which is a great challenge for
the current experimental technology. In linear optics, two
types of Fredkin gate—heralded gate and post-selected
gate—have been proposed �11–13�. Apart from the require-
ment of ancilla photons and small probability, the shortcom-
ings of these gates are obvious. The heralded Fredkin gates
require single-photon detectors, which is also a great chal-
lenge for the current technology, and the post-selected Fred-
kin gates work on the coincidence basis, which results in
these gates not being scalable. Compared with these
schemes, only the coherent states are required in our scheme,
and the structure is so simple that we think it is feasible with
the current technology.

D. Toffoli gate, CU gate, and MCU gate

A little change that a CNOT gate or arbitrary two-qubit
unitary gate replaces the setups in the dashed line of Fig. 3,
associated with appropriate transmissivities of the four beam
splitters, is enough for the realization of the Toffoli gate or
the CU gate. In the following, we calculate the probability of
the Toffoli gate and the CU gate. For the Toffoli gate, two
coherent states are required because a CNOT gate is included
in this scheme. Consider a single photon �control photon� in
the state ���=��H�+��V� ����2+ ���2=1�, and two photons
�target photons� in the state ��=q1�HH�+q2�HV�+q3�VH�
+q4�VV� ��i�qi�2=1�. Suppose that the transmissivities �re-
flectivities� of the four BSs are T1 ,T2 ,T3 ,T4 �R1 ,R2 ,R3 ,R4�,
respectively, now the modified scheme of the Fredkin gate
will evolve the initial state ����� to the following �here we
also retain the case that no phase shift is induced in the
coherent state�:

�T1R2R3T4��H��q1�HH� + q2�HV� + q3�VH� + q4�VV��

+
1
�2

�R1T2T3R4��V��q1�HH� + q2�HV�

+ q3�VV� + q4�VH�� ,

where the coefficient 1 /�2 is induced by the CNOT gate. The
Toffoli gate is completed when the condition �T1R2R3T4

= 1
�2

�R1T2T3R4 is satisfied. The success probability is
Psucc

Toffoli=T1R2R3T4. Choose T1=R2=R3=T4= 1
�42+1

; the success
probability may be Psucc

Toffoli�
1

23 . Similarly, a CNOT gate con-
ditional controlled by the homodyne detection �the phase of
the coherent state is �2�� through a classical feedforward is
implemented in the outputs of BS2 and BS4; the probability
may be Psucc,max

Toffoli = 2
23 .

In linear optics, two types of Toffoli gate—heralded gate
and post-selected gate—have been proposed �13,15�. Simi-
larly, apart from the requirement of ancilla photons and small
probability, the uses of single-photon detectors and the coin-
cidence measurement limit their use in the universal compu-
tation. These shortcomings do not exist in our scheme, and
the simple structure makes it much feasible with current
technology.

The realization of the CU gate is similar, and the success
probability is determined by the probability of the arbitrary

unitary gate �suppose as 1 / p� which can be realized by some
CNOT gates and single-qubit gates, and the transmissivities of
the four beam splitters. The condition for the CU gate is
�T1R2R3T4= 1

�p
�R1T2T3R4. Also choose T1=R2=R3=T4

= �1 /�4 p+1�; the success probability of the CU gate may be
Psucc

CU = ��1 /�4 p+1�4�, and it may be Psucc,max
CU =2��1 /�4 p+1�4�

with some additional setups similar to the Toffoli gate. In
addition, it is straightforward to develop this technique to the
realization of the MCU gate, which is shown in Fig. 4. The
realization is described in the following. The control photons
are all transmitted through a balanced MZ interferometer
formed by two PBSs, respectively, while the target photons
are all transmitted through a balanced MZ interferometer
formed by two BSs, respectively. Next, similar to the setups
in the dashed line of Fig. 3, in one arm of all the MZ inter-
ferometers formed by the BSs, we implement a multiqubit
unitary gate that can be realized by the quantum control
gates described above. Assisted by some coherent states and
the weak cross-Kerr nonlinearity, the MCU gate can be real-
ized associated with the appropriate transmissivities of the
BSs. Compared with the realization of the MCU gate with
many CNOT gates and single-qubit gates, our scheme can
reduce the complexity of the realization greatly.

III. DISCUSSION AND CONCLUSION

Now, we discuss briefly the feasibility of our schemes.
For the common uses of the linear optical elements �BS,
PBS, PS, etc.� and the MZ interferometers, we limit our at-
tentions in the weak cross-Kerr nonlinearity. Our schemes
will be implemented when the homodyne detections of the
phase shifts of the coherent states are exact. However, in a
practice experiment, decoherence is inevitable; for instance,
photon loss may occur when a coherent state is transmitted
through a fiber. When photon loss occurs, the qubit states
will evolve to mixed states after the homodyne detection
�16–18�, after which the fidelity of these control gates will
decrease. As described above, the amplitude of the coherent
state � may be large enough to satisfy the requirement ��
�1 when the cross-Kerr nonlinearity is small. However, as
the increasing of the amplitude of the coherent states, the
fidelity of these gates will decrease simultaneously due to the
decoherence �photon loss�. Fortunately, it is demonstrated in
Ref. �17� that the decoherence can be made arbitrarily small
simply by an arbitrary strong coherent state associated with a
displacement D�−�� performed on the coherent state and the
quantum nondemolition detection �QND� photon-number-

FIG. 4. Multicontrol-U gate.
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resolving detection. This conclusion is obtained in a parity
gate with the phase shifts 0 , �� of the coherent state. In our
schemes, the C-path gate and CNOT gate are also imple-
mented with the same phase shifts �0, ��� of the coherent
states. Then with the photon-number-resolving detection,
these two gates may be robust against the photon loss. More-
over, the phase shifts of the coherent state in the multiqubit
gates �Frekin gate, Toffoli gate, CU gate, MCU gate� may be
0, �� , �2�, etc. But because no phase shift induced in the
coherent state is retained, only the exact photon-number-
resolving detection n=0 is required, thus these multiqubit
gates are also robust. In summary, our schemes of quantum
control gates are feasible with the current experimental tech-
nology.

In conclusion, in this paper, with the weak cross-Kerr
nonlinearity, we first present a special experimental scheme
called a C-path gate with which the realization of all possible
bipartite POVMs of two-photon polarization states can be

simpler and nearly deterministic. Following the same tech-
nique, the schemes of the realization of quantum control
gates have been proposed, including the CNOT gate �1 /2�, the
Fredkin gate �1 /8�, the Toffoli gate �2 /23�, the CU gate, and
even the MCU gate. All these gates are scalable with certain
probabilities that are larger than those gates in linear optics.
Fewer resources are required and the structures of these gates
are very simple, therefore think they are feasible with current
technology and may be useful for the realization of universal
computation in optics.
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