Turkish Journal of Physics

Turkish Journal	Electrical Characteristics of Si Doped with Sb by Laser Annealing
of	Raid A. ISMAIL, Aseel A. HADI
Physics	Department of Applied Sciences, University of Technology} Baghdad-IRAQ
Keywords Authors	Abstract: Laser induced diffusion of antimony in silicon was obtained using a Nd:YAG pulsed laser. The irradiation of antimony-coated silicon by laser beam allowed melting and diffusion of antimony inside the silicon. Diodes were fabricated. Laser beam energy and substrate temperature played a major role in electrical sheet conductivity I-V, and C-V characteristics of the fabricated diodes. High laser energy reduced the electrical sheet conductivity and dominated the recombination current due to the generation-recombination process and trapping centers. On the other hand, the diffusion current dominated for diodes fabricated under heating conditions of the sample during laser irradiation. The C-V measurements of fabricated diodes revealed that the junction were of abrupt type.
0	Key Words: Laser annealing, LID doping, Silicon devices, Sb dopants
<u>phys@tubitak.gov.tr</u> <u>Scientific Journals Home</u> <u>Page</u>	Turk. J. Phys., 27 , (2003), 145-152. Full text: <u>pdf</u> Other articles published in the same issue: <u>Turk. J. Phys.,vol.27,iss.2</u> .