Turkish Journal of Physics

Turkish Journal

of

Physics

Properties of Ag-Doped Bi_(1.6)Pb_(0.4)Sr₂Ca₃Cu_(4-x)Ag_xO_y (2234) Oxides Prepared by S.S.R. Method

> S. BOLAT, E. YANMAZ \& H. CÖMERT Department of Physics, Faculty of Arts \& Sciences Karadeniz Technical University, 61080 Trabzon-TURKEY e-mail: yanmaz@ktu.edu.tr

phys@tubitak.gov.tr

Scientific Journals Home Page <u>Abstract:</u> The effect of Ag-doping $Bi_{1.6}Pb_{0.4}Sr_2Ca_3Cu_{4-x}Ag_xO_y$ compounds (x=0.0-1.0), prepared by conventional Solid-State-Reaction (SSR) technique, was studied using x-ray diffraction (XRD) and electrical resistivity. The high-T_c fraction of the 2223 phase, formed from the nominal composition of 2234, decreases with increasing Ag content. From lattice parameter calculations it follows that Ag-doping the unit cell phase of $(Bi,Pb)_2Sr_2Ca_2Cu_3O_y$ is limited to the value of x\leq0.1. The zero resistance critical temperature $(T_{c,zero})$ was determined from the resistivity curves for all samples. The value of $T_{c,zero}$ decreases slightly to 106 K for x\leq0.4 and when the nominal silver content increases up to x=0.7 or more $T_{c,zero}$ strongly decreases to 72 K. The critical current density J_c at 77 K decreases dramatically as silver content increases. This result is discussed on the basis of precipitation of low-T_c 2212 and other impurity phases in $Bi_{1.6}Pb_{0.4}Sr_2Ca_3Cu_{4-x}Ag_xO_y$ compounds.

Turk. J. Phys., **24**, (2000), 129-136. Full text: <u>pdf</u> Other articles published in the same issue: <u>Turk. J. Phys.,vol.24,iss.2</u>.