Turkish Journal of Physics

The influence of Ge content and annealing temperature on the d.c and a.c conductivity of Ge_xSe_{1-x} thin films

M. F. A. ALIAS, M. N. MAKADSI and Z. M. AL-AJELI

Physics Department, Science College, University of Baghdad P.O. Box 47162 Jadiriyah, Baghdad-IRAQ

Turkish Journal

of

Physics

Keywords Authors

0

phys@tubitak.gov.tr

Scientific Journals Home Page **Abstract:** Various samples of $\text{Ge}_{x}\text{Se}_{1-x}$ system have been prepared for x = 0.05, 0.15& 0.25 in an evacuated quartz tube. Thin films of $\text{Ge}_{x}\text{Se}_{1-x}$ film have been prepared via a thermal evaporation method with 350 \pm 5 nm thickness and rate deposition 6 nm/s. The alloy structure and thin films have been examined by X-ray diffraction (XRD). Atomic absorption spectroscopy (AAS) was used to examine the concentration of the composite elements (Ge and Se). The d.c and a.c conductivity of $\text{Ge}_{x}\text{Se}_{1-x}$ thin film have been studied as a function of Ge content x and annealing temperature within the range 303-448 K. Our results showed that the dc conductivity σ of thin $\text{Ge}_{x}\text{Se}_{1-x}$ films increases with increasing Ge content and decreases with increasing annealing temperature T_{a} . Electrical activation energy E_{a} decreases with increasing x values and increases with increasing annealing temperature. The a.c conductivity increases with increasing x values. The exponent s in the relation $\sigma_{a.c}$ \propto ω^{s} , and which determines the transfer mechanism, decreases with increasing x and T_{a} and at frequencies f = 10², 10³ and 10⁵ Hz. The relaxation time τ and polarizibility α have been measured from the cole-cole plot for x = 0.05 at $T_{a} = 303$, 398 and 448 K, with the finding that the relaxation time and polarizibility decreased with increasing T_{a} .

Key Words: a.c conductivity, d.c conductivity, thin Ge_xSe_{1-x} film, dielectric constant

Turk. J. Phys., **27**, (2003), 133-144. Full text: <u>pdf</u> Other articles published in the same issue: <u>Turk. J. Phys.,vol.27,iss.2</u>.