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Theory of ZT enhancement in nanocomposite materials.
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The effect of interface scattering on the performance of disordered, nanocomposite thermoelectric
materials is studied theoretically using effective medium theory and direct numerics. The interfacial
electronic and phonon scattering properties which lead to an enhancement of the thermoelectric
figure of merit ZT are described. Generally, ZT enhancement requires the interfacial electrical
conductance to be within a range of values, and the thermal phonon conductance to be below
a critical value. For the systems considered, these requirements on interface scattering for ZT
enhancement are expressed in terms of the bulk properties of the high-ZT material, and the ratio
of the constituent bulk Z values.

I. INTRODUCTION

There has been considerable recent interest in utiliz-
ing nanostructure to enhance thermoelectric performance
[1]. A good thermoelectric has scattering mechanisms for
phonons and electrons with different features: electron
scattering should be strongly energy-dependent, while
phonon scattering should simply be strong. Nanostruc-
tured materials may provide a route to meeting both
requirements [2]. Nanostructure can change a mate-
rial’s basic electronic properties; for example, the in-
clusion of localized impurity states can enhance peaks
in the density of states [3], leading to stronger energy-
dependence of scattering. Alternatively, nanostructure
on a length scale greater than the mean free path does not
change the constituent materials’ basic electronic prop-
erties, but scattering at the interface between material
phases changes the bulk composite properties. A mis-
match in material density or sound speed generally de-
creases the phonon conductivity through interface scat-
tering, and some interfaces provide a potential (e.g. a
Schottky barrier) which serves as an effective energy fil-
ter, transmitting higher energy electrons, while blocking
lower energy electrons [4]. The effect of nanostructuring
on the thermoelectric figure of merit ZT was systemat-
ically studied in Ref. (5), where ZT enhancement was
observed for a range of nanocomposite mixing. Previ-
ous theoretical works have analyzed in detail the electron
[6, 7] and phonon scattering [8] at specific interfaces. In-
terfaces that scatter electrons and phonons as described
above may increase ZT , and a more quantitative and
general description of the required interfacial properties
for ZT enhancement in composite materials is provided
here.

In this work, I employ a linear response model of trans-
port to study disordered, two-component materials - in-
cluding the effects of interface scattering - using effective
medium theory and direct numerics. I describe the spe-
cific electronic and phonon scattering properties which
lead to ZT enhancement of the composite. The require-
ments for ZT enhancement are expressed in terms of the
bulk properties of the high ZT constituent, and the ratio
of the constituent bulk Z values. Analysis of these re-

quirements demonstrates the challenges with the nanos-
tructuring approach for ZT enhancement, but should
facilitate an efficient search for materials that provide
higher efficiency.

II. MODEL

The starting point is the linear response description of
transport for the electrical current j and thermal current
jQ [9]:

j = −σ∇V + σS∇T ,

jQ = − (κe + κγ)∇T + σST∇V , (1)

∇ · j = 0; ∇ · jQ = 0, (2)

where σ is the local electrical conductivity, κe (κγ) is the
electron (phonon) contribution to the total local thermal
conductivity κ (κ = κe + κγ) (all thermal conductivities
evaluated for zero electric field), S is the thermopower, V
is the electrostatic potential, and T is the temperature.
I assume that σ and κe obey the Wiedamann-Franz law:
κe = σL0T , where L0 is the Lorenz number. Eq. (1)
is valid for length scales greater than a mean free path,
which for relevant materials is on the order of 10 nm.
The figure of merit ZT is:

ZT =
S2σT

κ− S2σT
=

N

1−N +K
. (3)

where K = (κγ/κe) and N = S2σT/κe. N can be
rewritten in terms of the thermopower only, using the
Wiedamann-Franz law: N = S2/L0. N is constrained
by the second law of thermodynamics to be less than 1.
Equivalently, S is always less than

√
L0 ≡ Smax. An

ideal thermoelectric has electronic properties such that
N → 1, and low phonon thermal conductivity such that
K → 0.
To study the thermoelectric properties of nanocompos-

ites, I solve Eqs. (1-2) directly for an ensemble of ran-
domly disordered configurations in 3-d. Fig. (1) shows a
schematic of the method. I use a random site approach
in which sites are randomly assigned as material 1 with
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probability c, or material 2 with probability (1− c). The
link between two sites represents a resistor (or conduc-
tance), whose value is set by the adjacent site types. Fig.
(1) shows the conductance values for the three possible
cases, along with the associated probability for each case.
In the table, σ1 (σ2) is the bulk conductivity for mate-
rial 1 (material 2), and σ12 = σ1σ2/ (σ1 + σ2). σint is
the interface conductance, and ∆x is the grain size of
the material. In the absence of interface scattering, ∆x
factors out of the problem and is not important. In the
presence of interface scattering, ∆x is a key parameter:
a small ∆x implies a higher interface density, and a more
significant effect of the interface scattering. It’s impor-
tant to note that this theory applies only to materials
for which ∆x is greater than the mean free path. Fi-
nally, I note that this scheme is not unique; Appendix B
discusses more complicated schemes, and shows compar-
isons between different schemes. The advantage of the
simple approach described here is that it captures the
physics of the systems studied well, and is amenable to
analytic treatment with effective medium theory.
Numerically, the system is discretized into 203 sites

(the results do not change appreciably when going to 303

sites), and the ensemble size is such that the statistical
error of the effective transport parameters is converged
(this typically requires about 30 configurations). The
error bars on the plots of numerical results indicate the
statistical uncertainty (one standard deviation).

FIG. 1: (a) depicts a typical random site configuration, where
the links between sites are set by the adjacent site types. (b)
shows the values of conductance for each link type, along with
the probability for each link type. As discussed in the text,
∆x is the grain size, and σ12 is the series conductivity of σ1

and σ2.

The transport properties of a multi-component, disor-
dered system can be approximated with effective medium
theory (EMT). As shown in Ref. (11), the effective
medium electrical conductivity σ, total thermal conduc-
tivity κ, and thermopower S satisfy:

∑

i

Pi

(

σi − σ

σi + 2σ

)

=
∑

i

Pi

(

κi − κ

κi + 2κ

)

= 0 , (4)

S = 3κσ

(

∑

i

Pi

σiSi

(κi + 2κ) (σi + 2σ)

)

×

(

∑

i

Pi

[

σiκ+ σκi + 2σκ− σiκi

(κi + 2κ) (σi + 2σ)

]

)

−1

, (5)

where i labels the link type, and Pi is the probability of
a link with transport parameter values σi, κi, Si.
Each material type (bulk 1, bulk 2, and interface) is

described by three parameters: (σ, κγ , S), so that 9 ma-
terial parameters (plus the concentration c) describe a
specific two-component system. This parameter space is
too large to describe in its entirety. To make progress, I
generally present results for fixed bulk properties, fixed
interfacial thermopower, and vary the interfacial electri-
cal and phonon thermal conductivities.
Appendix A discusses the scaling of Eqs. (1) to dimen-

sionless form. The transport coefficients (σ, κγ , S) end up
being scaled by those of material 1 (so that σ2 → (σ2/σ1);
the interface values also have a value of ∆x present in
their dimensionless form: σint → (σint/σ1)∆x). For ease
of presentation, I omit this explicit scaling in most plots;
the axis label σ̄int refers to (σint/σ1)∆x , and the label
Kint refers to (κγ

int/κ
e
1)∆x.

III. RESULTS

A. single interface

To illustrate the qualitative effect of interface scatter-
ing on thermoelectric performance - and the conditions
under which ZT is enhanced - it suffices to consider the
simplest possible system: 1-d transport in a bilayer. This
maps onto a 3-resistor-in-series problem.
Fig. (2) illustrates the role of interface scattering in

increasing ZT . The solid red lines denote paths for heat
current (top red line for phonons, bottom red line for elec-
trons), the green dashed line for thermoelectric charge
current. The cylinder size represents the magnitude of
the conductance for a specific transport path. Interface
scattering can increase ZT in two ways: 1. by reducing
the phonon thermal conductivity, which leads to K → 0,
or 2. by increasing the thermopower, which leads to
N → 1. The interface conductances in Fig. (2) improve
ZT in both ways. In the rest of the paper, I focus on the
scenario in which ZT is enhanced via increased phonon
scattering. One reason for this is that enhancement via
increase in thermopower is less well described by this nu-
merical model. See Appendix B for further discussion on
this point.
Fig. (3) shows the transport properties of the layer for

fixed bulk properties, and varying the interface electrical
conductance and phonon thermal conductance (the in-
terface thermopower is fixed). The results are intuitively
clear: when the interface electrical conductance is small,
it determines the overall layer conductance; conversely
when the interface electrical conductance is large, the in-
terface is transparent and the overall conductance is set
by the bulk. A similar scenario holds for the thermal
conductance (though now the total thermal conductance
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FIG. 2: Depiction of the scattering in a simple bilayer. The
phonon thermal conductance (red cylinder) is detrimental to
thermoelectric performance, while the thermoelectric conduc-
tance (green cylinder) is beneficial. Interface scattering can
improve overall thermoelectric performance by improving ei-
ther or both of these transport processes, as shown in the
figure. Here ∆x refers to the layer thickness.

depends on both electrical and phonon components). I’ve
assumed the thermopower is high for all constituents, so
that its value is relatively unaffected by the interface.
This leads to a ZT value which is enhanced relative to
the bulk for a certain range of interfacial transport pa-
rameters.
The region of ZT enhancement is shown again in Fig.

(4), where only values for which ZT is more than 5%
greater than the bulk value are shown. For disordered
materials in 2 and 3 dimensions, the phase space of ZT
enhancement is very similar to this 3-resistor case, so it’s
worth investigating this simple example fully.
In the limit of low interface conductance (the lower

left-hand portion of Fig. (4)), the interface properties
dominate. ZT of the layer is then approximately that of
the interface, so the contours of Fig. (4) in this region
are simply those of Eq. (3), with N → Nint, K → Kint.
The small σint in this region implies a small electron ther-
mal conductance κe

int, via the Wiedamann-Franz law. A
large ZT then requires a very small phonon thermal con-
ductance κγ

int, making ZT enhancement in this region
difficult to achieve. (Recall that for high thermopower,
ZT is set by the ratio of κe to κγ , see Eq. (3).) In the op-
posite limit of high interface conductance (σ̄int ≫ 1), the
interface is transparent electrically and thermally (ther-
mal transparency follows from Wiedamann-Franz law:
σint → ∞ ⇒ κe

int → ∞). Here purely bulk properties
are recovered, and ZT is not increased.
The crossover between these limits occurs around

σ̄int = 1 (or σint = σ1/∆x), when both interface and
bulk properties are important. This is the region most
accessible for ZT enhancement. Not surprisingly, ZT is
always increased as the phonon thermal conductance of

FIG. 3: Transport parameters of bilayer as σ̄int and Kint are
varied. (Recall the axes labels omit scaling factors. Their in-
clusion is via: σ̄int = (σint/σ1)∆x and Kint = (κγ

int/κ
e
1)∆x.)

The fixed system parameters are: σ2 = σ1, κγ
2 = κγ

1 , S1 =
Smax, S2 = 0.9 Smax, Sint = 0.9 Smax (so that Z1T =
0.5, Z2T = 0.375).

the interface is decreased. I label the maximum value of
Kint for which there is a ZT enhancement of 5% over the
bulk value as Kmax

int . (Recall this parameter in full scaled
form is Kmax

int = (κγ
int/κ

e
1)∆x.) This is a key param-

eter because finding materials with interface scattering
that lies below this value is a primary challenge for using
nanocomposites for ZT enhancement [16]. I label the as-

sociated electrical conductance σopt
int (see Fig. (4)). The

next section is largely devoted to describing how the val-
ues of Kmax

int and σopt
int depend on the properties of the

bulk material constituents.
So far I have fixed the interface thermopower Sint. To

illustrate how the space of ZT enhancement depends
on Sint, I make some slices through the full parameter
space of the interface, shown in Fig. (5). Not surpris-
ingly, as the thermopower of the interface decreases, the
space of ZT enhancement in (σ̄int, Kint) gets smaller (i.e,
it’s harder to achieve enhancement when the interfacial
thermopower is weak). In the rest of the paper, I fix
Sint = Smax (or Nint = 1). It should be kept in mind
that an interface with smaller S will have more strin-
gent requirements on phonon thermal conductance (i.e a
smaller Kmax

int ) for ZT enhancement.

B. 3-d disordered material

Moving to disordered materials in 3-d introduces a new
system parameter - the concentration of one material
with respect to the other. Fig. (6) shows the bulk trans-
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FIG. 4: Replot of Fig. (3d): Z of the trilayer normalized by
Z of the high-ZT bulk constituent. Only values for which ZT
of the trilayer is 5% greater than the bulk are shown. I use
the parameters Kmax

int , σopt

int to characterize the phase space of
interface properties that lead to ZT enhancement.

FIG. 5: Region of ZT enhancement for the full parameter
space of the interface. Interfaces with high N (high ther-
mopower) are advantageous for ZT enhancement. The same
bulk parameters are used as in Fig. (3).

port parameters as a function of concentration calculated
numerically and with effective medium theory. The in-
terface scattering leads to a decrease in electric and ther-
mal conductivity relative to the bulk values of the con-
stituents. ZT is enhanced relative to the bulk value for a
range of concentrations, shown in Fig. (6d). Note there
is excellent agreement between effective medium theory
and the numeric results; most of the results presented in
the rest of the paper are derived from effective medium

theory, except where explicitly noted.

FIG. 6: The transport parameters of a two-component disor-
dered medium as a function of relative concentration. Sys-
tem parameters are: σ2 = 1.1 σ1, κγ

1 = 2 κe
1, κγ

2 =
2.3 κe

1, S1 = Smax, S2 = 0.77 Smax, σint = 0.24 σ1/∆x, κγ
int =

0.48 κe
1/∆x, Sint = 0.97 Smax. (a) and (b) show a decrease

in the conductance due to interface scattering. (d) shows an
enhancement in ZT .

The rest of this section describes how the interface
properties needed for ZT -enhancement depend on the
constituent bulk materials. I show that the phase space
for ZT enhancement essentially depends only on a small
number of parameters of the constituent materials. This
is a useful simplification. It enables a precise answer
to the question: “given a high-ZT material with ther-
mopower S1 and phonon thermal conductivity κγ

1 , and
another material with Z value Z2, what are the inter-
face scattering properties that are required to observe
ZT enhancement of the composite material?”. I describe
the required interface properties using the parameters
(Kmax

int , σopt
int ) introduced in the previous section and in

Fig. (4).
For each set of bulk and interface properties, I vary

the concentration and determine the maximum possible
ZT - this maximum value is what is reported in the fol-
lowing results. In all of these results, I assume that the
bulk thermopower of the high-ZT constituent is large
(S1 = Smax), so that ZT enhancement is a consequence
of reducing phonon thermal conductivity.
Fig. (7) is an illustration of how Kmax

int characterizes
the phase space of ZT enhancement as bulk materials
change. Fig. (7a) shows how the region of enhancement
changes as the ZT value of one bulk material component
gets smaller. As one component’s ZT value decreases,
it’s more difficult to achieve ZT enhancement of the com-
posite via interface scattering. Fig. (7b) shows how this
behavior is translated into the parameter Kmax

int . In this
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example, ZT of material 2 is degraded due to a higher
phonon thermal conductivity of material 2.

FIG. 7: (a) shows regions of ZT enhancement with respect
to interface properties for Z1T = 0.5 (N1 = 1, K1 = 2),
Z2T is decreased by increasing K2, with values (2.67, 4.0,
8.0) (N2 = 1 for all cases). (b) shows how this phase plot is
translated to a plot of Kmax

int versus Z2T .

Fig. (8) shows that for a fixed high-ZT constituent,
Kmax

int essentially only depends on Z2. In Fig. (8a) I show
plots of Kmax

int as Z2T is degraded in three different ways:
with a “bad” K2 (or high phonon thermal conductivity),
a “bad” S2 (or low thermopower), and a combination of
both. Fig. (8b) shows the same thing for a different high-
ZT material. Fig. (8b) also shows numeric results (with
a “bad K2” scenario), which confirm that the effective
medium theory and numerical results are very similar.
What’s important is thatKmax

int is quite insensitive to how
the low-ZT material is deficient. The bulk ZT values of
the constituent alone determines the required interfacial
phonon scattering for ZT enhancement[13].

FIG. 8: In (a), ZT1 = 1 (N1 = 1, K1 = 1), and ZT2 is re-
duced in three ways: by decreasing N2, increasing K2, or a
combination of both. (b) shows the same plot, with ZT1 = 0.5
(N1 = 1, K1 = 2), and also shows results obtained numeri-
cally.

Fig. (9a) shows the result of plotting all the curves of
Fig. (8) together, normalized by their maximum value.
Again a remarkable and useful simplification takes place,
where the curves collapse on an approximately “univer-
sal” curve. The vertical spread of this normalized curve

shows the spread in values for the different curves of Fig.
(8).
The right hand-side of the normalized curve of Fig.

(9a), where Z2 = Z1, corresponds to a system with iden-
tical bulk phases, with interface scattering between the
identical grains. The value ofKmax

int for such a system sets
the overall normalization for plots like Fig. (8). In Fig.
(8b), I plot the value of this normalization as a function
of Kbulk and Nbulk. The two parts of Fig. (9) enable
an estimate for the required interface phonon thermal
conductance for ZT enhancement.
As an example, let the high-ZT constituent have N1 =

0.8, K1 = 2 (this implies Z1T = 0.36); this is shown
as a white dot in Fig. (9). Fig. (9b) shows the nor-
malization for the Kmax

int curve is 4. Now let the low-
ZT material have Z2T = 0.27, so that Z2/Z1 = 0.75.
Using Fig. (9a), I conclude Kmax

int for this material
combination is 0.25 × 4 = 1 (in dimensionful terms,
Kmax

int = (κγ
int/κ

e
1)∆x = 1). This means that ZT en-

hancement requires thermal transport parameters and
grain size such that (κγ

int/κ
e
1)∆x < 1.

FIG. 9: (a) shows the range of Kmax
int values as a function

of Z2/Z1 (from Fig. 8), when normalized by their maximum
value. (b) shows this overall normalization constant as a func-
tion of the thermoelectric parameters N andK of the high-ZT
bulk material. The white dot refers to an example described
in the text.

I next go through a similar description of how σopt
int de-
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pends on bulk material parameters. Fig. (10) shows σopt
int

as a function of the Z2/Z1, for two different high-ZT con-
stituents. I again find that, for fixed high-ZT material,
σopt
int essentially only depends on Z2. Fig. (11a) shows

the result of plotting all the curves of Fig. (10) by their

maximum value. Again, I find that σopt
int as a function of

Z2/Z1 is an approximately “universal” curve. Fig. (11b)
shows the normalization value of this “universal” curve
as a function of N and K of the high-ZT constituent.
These plots again enable an estimate of σopt

int in terms of
just a few bulk material parameters.
Returning to the example before (where we assumed

a high ZT material with parameters N1 = 0.8, K1 = 2,
and a low ZT material with Z2/Z1 = 0.75), Fig. (11b)
shows the normalization constant of about 5, which is
used with Fig. (11a) to infer σopt

int = 5 × 0.25 = 1.25. In
other words, attaining ZT enhancement through interfa-
cial scattering is most easily accessible with a combina-
tion of electrical conductivity values and grain size such
that (σint/σ1)∆x = 1.25.

σopt
int is an important constraint on the interface; even

if an interface blocks phonons effectively, if it also blocks
electrons too much (i.e has too low σ̄int), or is transpar-
ent to electrons (too high σ̄int), then it does not lead
to overall ZT enhancement. The reason for this is the
same as in the simple 3-resistor-in-series case, described
earlier. Note that the value of the overall normalization
for σopt

int is fairly constant over the range of bulk material
parameters. Generally, ZT enhancement requires an in-
terface conductance on the order of the bulk conductivity
divided by the grain size.

FIG. 10: In (a), ZT1 = 1 (N1 = 1, K1 = 1), and ZT2 is
reduced in three ways: by decreasing N2, increasing K2, or a
combination of both. (b) shows the same plot, with ZT1 = 0.5
(N1 = 1, K1 = 2), and also shows results obtained numeri-
cally.

Figs. (9) and (11) represent the main results of the
paper. They provide a blueprint to choosing material
properties such that a two-component composite results
in ZT enhancement. An important aspect of Fig. (9a) is
the rapid decrease of Kmax

int as one of the material’s ZT
value decreases. This means interfacial phonon scattering
can most easily enhance ZT when the two materials have
similar ZT values. This poses a key materials science

FIG. 11: (a) shows the range of σopt

int values as a function
of Z2/Z1 (from Fig. 10), when normalized by their maxi-
mum value. (b) shows this overall normalization constant as
a function of the thermoelectric parameters N and K of the
high-ZT bulk material.

challenge in pursuing this technique for ZT enhancement:
often materials with similar (high) ZT values have similar
density (i.e. both composed of heavy atoms); however,
interfacial phonon scattering is usually strongest between
materials with very dissimilar density and speed of sound
[16].

For a rough estimate of required material values,
the above analysis shows ZT enhancement via interface
phonon scattering requires material parameters which
satisfy an inequality on the order of κγ

int < κe
bulk/∆x.

A typical thermoelectric has κe
bulk = 1 W/ (m ·K). As-

suming a grain size of 10 nm, the interface phonon con-
ductance must be less than 108 W/

(

m2 ·K
)

for ZT en-
hancement. This value is certainly attainable for some
material combinations [16], though obtaining this value
of κγ

int for two materials with high ZT values (and low
κγ
bulk values) is likely to be a challenge.
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C. Dimension and concentration dependence

Here I briefly compare the results obtained for the
space of ZT enhancement in 1-d, 2-d, and 3-d. The com-
parison is shown in Fig. (12). The interface parameter
space for enhancement is very similar in all cases, but
that the enhancement is reduced in higher dimensions.
This is because some portion of interface scattering in
higher dimensions occurs in directions orthogonal to the
transport direction. This scattering is not effective in re-
ducing the phonon thermal conductivity along the overall
direction of the temperature gradient, and therefore does
not aid in increasing ZT . Also shown in Fig. (12) is the
concentration in 2-d and 3-d for which the maximum ZT
occurs. This value depends on the specific material pa-
rameters chosen. For example. if the two bulk materials
are equivalent, the optimum enhancement is always at
c = 0.5. As the two bulk materials properties deviate,
the optimum concentration moves away from 0.5 - it’s
more advantageous to have a higher concentration of the
high-ZT material. At the edge of the phase space of en-
hancement, the optimum concentration is such that the
composite is mostly high-ZT bulk.

FIG. 12: (a-c) show the region of ZT enhancement in 1, 2,
and 3 dimensions (1d refers to the bilayer case). Below the
2-d and 3-d cases, the concentration with the maximum ZT
is shown (concentration refers to percentage of material 1).
Fixed system parameters in all cases are: N1 = N2 = 1,
K1 = K2 = 2, S1 = Smax, S2 = 0.9Smax, Sint = 0.9Smax.

IV. CONCLUSION

In this work I described the conditions under which
the formation of a nanocomposite material results in en-
hancement of ZT over the constituent bulk values. ZT
enhancement is the result of electronic and phonon scat-
tering at the interface between different materials, and
occurs over a range of σ̄int, and for sufficiently low Kint.
Using effective medium theory and numerical simulation,
I give a prescription for the required value of interface
conductances for ZT enhancement, as a function of the
bulk N and K of the high ZT material, and the ratio of
the bulk Z values. The results presented in the 3-d dis-
ordered case are for Sint = Smax, and therefore represent
the most optimistic requirements on Kint and σ̄int.

I emphasize that this theory applies for composites
with phase separation greater than the mean free path
of electrons and phonons. It’s therefore most applicable
to nanostructuring techniques such as ball milling and
hot pressing. These techniques have shown the poten-
tial for ZT enhancement [17, 18]. Although not empha-
sized in this work, scattering at interfaces can also im-
prove efficiency via improved energy filtering, resulting
in enhanced power factor. The material constraints to
achieve ZT enhancement are obviously challenging, but
the precise specification of these constraints should aid in
the search for the best material choices for more efficient
thermoelectrics.
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V. APPENDIX

A. Dimensionless variables

To write Eqs. (1) in dimensionless form, I introduce
the following variables.

x =
x

L
; ∇ = L∇; (6)

T =
T

T0

; V = V
(

S1σ1

κe

1

)

; (7)

j = j

(

L

S1σ1T0

)

; jQ = jQ

(

L
κe

1
T0

)

, (8)

where L is the length of the sample in the transport di-
rection, T0 is a fixed reference temperature. This leads
to the dimensionless equations:

j = − 1

N1

(

σi

σ1

)

∇ V +

(

Siσi

S1σ1

)

∇ T

jQ = −
(

κi

κ1

)

∇ T +

(

Siσi

S1σ1

)

T ∇ V , (9)

where N1 =
(

S2

1
σ1T0

κe

1

)

. The prefactor 1/N1 of the di-

mensionless conductivity results in an “effective” con-

ductivity 1
N1

(

σi

σ1

)

that is used when solving Eqs. (VA).

Extracting an effective conductivity from evaluating the
charge current response to an electric potential requires
accounting for N1: σ = N1

(

j
∆V

)

, where ∆V is the ap-
plied potential difference.

B. Discretization scheme

The inclusion of interface scattering complicates the
scheme used to discretize Eqs. (1-2), which we discuss

more fully here. The relevant question is: given a contin-
uous distribution of material, what discrete set of points
should we choose to represent the potential and tempera-
ture fields? The answer depends on the spatial variation
of the fields; to accurately represent the continuous fields
requires a more dense mesh near areas of rapid variation
in potential and temperature. For example, small inter-
face electrical conductance (compared to the bulk con-
ductivity divided by grain length) implies a sharp poten-
tial drop across an interface. This suggests a discretiza-
tion scheme as shown in Fig. (13a). The conductance on
the link separating two plaquettes is set to σint for pla-
quettes with different identities, and set to ∞ otherwise.
I call this discretization scheme the “edge scheme”. In
two dimensions the sampling may be chosen as shown in
Fig. (14a).

FIG. 13: Two different discretization schemes represented in
1-d. In the “center scheme” (a), the interface conductance is
partially combined with bulk conductances, and the potential
is evaluated at the center of each plaquette. In the “edge
scheme” (b), the conductances are separate and the potential
is evaluated at both edges of the plaquettes.

FIG. 14: Implementation of (a) center and (b) edge schemes
in 2-d.

In the body of the paper I use a simpler scheme, de-
picted in Fig. (13b). Here the fields are evaluated at the
center of the plaquette, and the interface conductance is
put in series with the adjacent bulk conductance a pri-

ori. I call this the “center scheme”. This results in a less
dense sampling, and is therefore not as accurate as the
edge scheme. However, as mentioned in the body of the
paper, this scheme is easily adopted to effective medium
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theory, which is very powerful and much more convenient
than direct numerics. To compare the two schemes, I con-
sider a two-component mixture in two dimensions. Fig.
(15) shows the ZT value of the composite as I vary the
interface electrical conductance σ̄int and phonon thermal
conductance Kint. In this case, I let S1 = S2 = Smax, so
that ZT enhancement is the result of increased phonon
scattering. Both schemes give similar results, although
the edge scheme shows slightly greater ZT enhancement.
In the region of ZT enhancement, the interfacial con-
ductance is not appreciably larger than the bulk, so that
the temperature and voltage drops aren’t strongly local-
ized at the interface. This enables the center scheme to
represent the fields reasonably well. Moreover the en-
hancement is due to blocking phonons, or a small κγ

eff .
Adding the large bulk κγ

bulk with the small κγ
int in se-

ries a priori results in an effective κγ that’s still small.
(For conductors in series, the smallest conductance dom-
inates). I therefore conclude that the approach adopted
in the paper works well to describe ZT enhancement via
phonon scattering at the interface.

FIG. 15: ZT of the composite versus interface σ̄int and Kint.
The system parameters are: 40x40 plaquettes in 2-d, N1 =
N2 = 1, K1 = K2 = 2 (so that Z1T = Z2T = 0.5), Sint =
0.9 Smax. Interface scattering of phonons reduce K of the
composite, resulting in an enhancement of ZT .

Fig. (16) shows ZT as a function of interface properties
for the two schemes when the bulk thermopower is small
(S1 = S2 = 0.5Smax). The role of the interface in ZT en-
hancement is to provide energy filtering of the electrons,
increasing S of the composite. The two schemes’ results
are now rather different - the center scheme underesti-
mates the ZT enhancement by a notable margin. This
is because energy filtering is accomplished with a sharp
temperature drop across the interface, which is not rep-
resented in the center scheme. Moreover, adding the low
bulk value of (Sσ)bulk in series with the high interface
(Sσ)int a priori leads to a small effective (Sσ) (again,
when adding these “conductances” in series, the smallest
one dominates); the potential increase in Sσ is partially
nullified by the model construction.
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FIG. 16: ZT of the composite versus interface σ̄int and Kint.
The system parameters are: 40x40 plaquettes in 2-d, N1 =
N2 = 0.5, K1 = K2 = 0.5 (so that Z1T = Z2T = 0.5),
Sint = 0.9 Smax. These parameters lead to the same ZTint

as in Fig. (15). Further analysis of the data shows that the
center scheme underestimates the increase in N (equivalently
S) of the composite, resulting in a smaller ZT relative to the
edge scheme.


