Turkish Journal of Physics

Turkish Journal	Persistent Currents in Mesoscopic Loops and Networks
of	Igor O. KULIK Department of Physics, Bilkent University, Ankara 06533, TURKEY
Physics	Department of Physics, Dirkent Oniversity, Airkard 66666, Portice P
Keywords	<u>Abstract:</u> The paper describes persistent (also termed ``permanent", or ``non-decaying") currents in mesoscopic metallic and macromolecular rings, cylinders and networks. The current arises as a response of system to Aharonov-Bohm flux threading the conducting loop and does not require external voltage to support the current. Magnitude of the current is periodic function of magnetic flux with a period of normal-metal flux quantum $\Phi_0 = hc/e$. Spontaneous persistent currents arise in regular
Authors	macromolecular structure without the Aharonov-Bohm flux provided the azimuthal periodicity of the ring is insured by strong coupling to periodic background (a ``substrate"), otherwise the system will undergo the Peierls transition arrested at certain flux value smaller than Φ_0 . Extremely small (nanoscopic,
	macromolecular) loop with three localization sites at flux $\Phi = \Phi_0/2$ develops a Λ -shaped energy
@	configuration suitable to serve as a qubit, as well as at the same time as a ``qugate" (quantum logic gate) supporting full set of quantum transitions required for universal quantum computation. The
phys@tubitak.gov.tr	difference of the Aharonov-Bohm qubit from another suggested condensed-matter quantum computational tools is in the radiation free couplings in a qubit supporting the scalable, long-lived
Scientific Journals Home	quantum computation.
Page	
	Turk. J. Phys., 27 , (2003), 395-418. Full text: pdf
	Other articles published in the same issue: Turk. J. Phys.,vol.27,iss.5.