2006 Vol. 46 No. 1 pp. 33-36 DOI:

Topological Structure of Phase Vortex in Resonating Valence Bond Superconductivity SHI Xu-Guang¹ and DUAN Yi-Shi²

¹ College of Basic Science and Technology, Beijing Forestry University, Beijing 100083, China ² Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China (Received: 2005-9-9; Revised:)

Abstract: In this paper, based on the Schrödinger equation and the Ψ -mapping theory, the accurate expression for the gradient of resonating valence bond superconducting phase Θ^s is found. The expression of $\nabla \Theta^s$ is just the velocity flow V without considering the coefficient. The curl of $\nabla \Theta^s$ is where the vortex lies, and has important relation to $\delta^2(\Psi)$ and an important relation to the zero points of resonating valence bond superconducting order parameter Ψ . The topological structure of the vortex is characterized by the Ψ -mapping topological numbers Hopf-index and Brouwer degrees. The Ginzberg-Landau equation in resonating valence bond state also is discussed in this theory. The magnetic property is discussed also.

PACS: 02.40.Pc

Key words: Ψ-mapping theory, phase vortex, GL-equation, RVB superconductivity

[Full text: PDF]

Close