

arXiv.org > physics > arXiv:1107.3596

Physics > Plasma Physics

We gratefully acknowledge supp the Simons Fo and member ins

Search or Article-id

(Help | Advance

Download:

- PDF
- PostScript
- Other formats

Current browse cont physics.plasm-ph < prev | next >

new | recent | 1107

Change to browse b

References & Citatio

NASA ADS

Bookmark(what is this?)

matter Bengt Eliasson, Padma K. Shukla (Submitted on 18 Jul 2011)

Nonlinear propagation of light in Dirac

The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency up- or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in super-dense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.

Comments:9 pages, 2 figuresSubjects:Plasma Physics (physics.plasm-ph)Cite as:arXiv:1107.3596 [physics.plasm-ph](or arXiv:1107.3596v1 [physics.plasm-ph] for this version)

Submission history

From: Bengt Eliasson [view email] [v1] Mon, 18 Jul 2011 23:36:03 GMT (31kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.