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Interaction enhanced imaging of individual atoms embedded in dense atomic gases
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We propose a new all-optical method to image individual atoms within dense atomic gases. The
scheme exploits interaction induced shifts on highly polarizable excited states, which can be spatially
resolved via an electromagnetically induced transparency resonance. We focus in particular on
imaging strongly interacting many-body states of Rydberg atoms embedded in an ultracold gas
of ground state atoms. Using a realistic model we show that it is possible to image individual
impurity atoms with enhanced sensitivity and high resolution despite photon shot noise and atomic
density fluctuations. This new imaging scheme is ideally suited to equilibrium and dynamical studies
of complex many-body phenomena involving strongly interacting atoms. As an example we study
blockade effects and correlations in the distribution of Rydberg atoms optically excited from a dense
gas.

The ability to prepare and probe individual quantum
systems in precisely controlled environments is a driving
force in modern atomic, molecular and optical physics.
Manipulating single atoms [1], molecules [2] and ions [3],
for example, is becoming a common practice. At the
heart of these experiments are the powerful imaging tech-
niques which have taken on great importance in diverse
areas, such as chemical sensing and chemical reaction dy-
namics [4], probing superconducting materials [5], and for
quantum logic and quantum information processing [6].
More recently, new single atom and single site sensitive
imaging techniques for optical lattices have opened the
door to control and probe complex many-body quantum
systems in strongly correlated regimes [7].

The usual approach to detect atoms is to measure the
fluorescence or absorption of light by driving a strong op-
tical cycling-transition. Weak or open transitions present
a difficulty since the maximum number of scattered pho-
tons per atom becomes greatly limited. In the case of
long lived states of trapped ions, the technique of elec-
tron shelving has been used as an amplifying mechanism
in order to directly observe quantum jumps [8]. Another
approach involves the use of an optical cavity to enhance
the interaction of the atoms with the light field [9]. This
makes it possible to reach single-atom sensitivity, but
usually at the expense of greatly reduced spatial resolu-
tion.

Here we propose a new method to image individ-
ual atoms embedded within a dense atomic gas. The
concept exploits strong interactions of the atoms with
highly polarizable Rydberg states of the surrounding gas.
The induced level shifts can then be transferred to a
strong optical transition and to many surrounding atoms
within a critical radius, thereby providing two mecha-
nisms which greatly enhance the effect of a single impu-
rity on the light field. The Rydberg states could act
as non-destructive probes for individual trapped ions,
nearby surface charges, dipolar molecules, or other Ry-
dberg atoms. In our approach, the interaction-induced
shifts are spatially resolved via an electromagnetically-
induced-transparency (EIT) resonance involving a weak
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FIG. 1. Scheme for imaging individual impurity atoms

within a dense atomic gas. Impurity atoms (crosses) are
embedded within a dense two-dimensional atomic gas of back-
ground atoms. The background atoms interact with two light
fields (coupling and probe) via a two-photon resonance with
an excited state |r〉. This coupling produces an EIT reso-
nance on the ground-state probe transition. However, strong
interactions with an impurity atom lead to a frequency shift
U of the resonance within a critical radius Rc. The change
in absorption properties of many surrounding atoms makes
it possible to map the impurity atom distribution to the ab-
sorption profile of a probe laser for analysis.

probe and a strong coupling laser in a ladder configu-
ration [10]. Even though the Rydberg state is barely
populated, the EIT resonance is extremely sensitive to
its properties [11, 12], thereby providing the means to
obtain a strong absorption signal and great sensitivity
combined with high spatial resolution for detecting indi-
vidual atoms.

We exemplify our imaging scheme for the specific case
of probing many-body states of strongly-interacting Ry-
dberg atoms in a quasi-two-dimensional atomic gas (de-
picted in Fig. 1). Rydberg atoms are of great inter-
est because their typical interaction ranges are compa-
rable to, or larger than, the typical interatomic separa-
tions in trapped quantum gases. Traditionally Rydberg
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atoms are field ionized and the resulting ions are sub-
sequently detected, which provides rather limited spa-
tial resolution. As a result, much of the work done so
far, such as the scaling laws for excitation [13], excita-
tion statistics [14] and light-matter interactions [11], has
been restricted to the study of cloud averaged proper-
ties. Müller et al. proposed to use a single Rydberg
atom to conditionally transfer an ensemble of atoms be-
tween two states [15]. Our method exploits the strong
Rydberg interactions with a background gas of atoms to
realize non-destructive single-shot optical images of Ry-
dberg atoms with high resolution and enhanced sensitiv-
ity. We anticipate this technique will complement the
new optical lattice imaging techniques [7], but with the
capability to directly image many-body systems of Ryd-
berg atoms. We show in particular that this will provide
immediate experimental access to spatial correlations in
recently predicted crystalline states of highly excited Ry-
dberg atoms [16].
To quantitatively describe the absorption of probe light

by a background gas of atoms surrounding a Rydberg
atom we follow an approach based on the optical Bloch
equations [10]. The Hamiltonian describing the atom-
light coupling is

H0 =
~

2

(

Ωp|e〉〈g|+Ωc|r〉〈e|

+∆p|e〉〈e|+ (∆p +∆c)|r〉〈r| + h.c.
)

. (1)

For resonant driving ∆p = ∆c = 0 a dark-state is formed
|dark〉 ≈ Ωc|g〉 − Ωp|r〉, which no longer couples to the
light field. Consequently, the complex susceptibility χ
of the probe transition vanishes and the atoms become
transparent.
The presence of a nearby Rydberg atom, however,

causes an additional energy shift U = ~C6/|d|
6 for the

state |r〉, where d is the distance to the Rydberg atom
and the interaction coefficient C6 reflects the sign and
strength of interactions on the |r〉 state. One should also
account for interactions between atoms in state |r〉, but
these can be neglected for Ωp ≪ Ωc when the population
in |r〉 becomes small. We also include spontaneous decay
from the states |e〉 and |r〉 with rates Γp, and Γc respec-
tively. From the master equation for the density matrix
ρ we calculate the steady-state absorption and solve for
the complex susceptibility of the probe transition numer-
ically.
In the weak probe limit (Ωp ≪ Ωc,Γp) we assume the

population stays mostly in the ground state (ρgg ≈ 1).
In this case we obtain for the susceptibility

χ=
iΓp

(Γp − 2i∆p) + Ω2
c(Γc − 2i∆)−1

, (2)

where ∆ = ∆p +∆c + C6/|d|
6.

Fig. 2 shows the probe absorption proportional to the
imaginary part of χ for different laser parameters and
for different distances to a Rydberg atom. Far from the
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FIG. 2. Probe absorption given by the imaginary part

of the susceptibility. (a) Im[χ] as a function of probe de-
tuning for Ωc = 1, Γc = 0.05 and ∆c = 0 (in units of Γp)
for various distances from the Rydberg atom. The solid line
is for d → ∞, dashed corresponds to d = Rc and the dotted
line is for d = Rc/2. (b) Dependence of Im[χ] as a function
of distance from the Rydberg atom with ∆p = 0.

influence of the Rydberg atom (d → ∞), the suscep-
tibility takes on a characteristic shape with vanishing
absorption on resonance. For shorter distances, inter-
actions tend to shift the transparency window and the
on-resonant susceptibility increases. At a critical dis-
tance d = Rc, Im[χ] = 1/2. For d < Rc, the excited
states |r〉 become far detuned and the background atoms
effectively act as two-level systems. In this case the usual
Lorentzian lineshape is recovered with maximum absorp-
tion on resonance. Hence, in the presence of a Rydberg
atom, N = n2DπR2

c ≫ 1 atoms, each with an absorp-
tion cross-section ∼ λ2, can scatter many photons to
produce a dark disk with radius Rc. From Eq. 2 and
taking ∆p = 0 and Γc ≈ 0 we find the critical distance
Rc = (2C6Γp/Ω

2
c)

1/6, and the distance dependent sus-

ceptibility Im[χ] ≈
(

1 + (d/Rc)
12
)

−1
. Since for typical

parameters N ≈ 50, and Rc ≈ 1 µm comparable to the
optical resolution, the spatially resolved probe absorp-
tion provides an excellent signature for the presence of a
Rydberg atom within a dense gas.

To apply this scheme to realistic situations one also has
to analyze the influence of noise. We identify two major
sources, one can be attributed to photon shot noise of
the probe while a second contribution is associated with
intrinsic atomic density fluctuations. Both noise sources
can be accurately described as Poissonian processes. This
suggests that the signal-to-noise ratio can be made arbi-
trarily large for large intensity and large density. How-
ever, to neglect interactions between background atoms
we require the probability to find more than one atom in
the |r〉 state within the range of background-background
interactions R′

c to be . 1 (for the states we consider
R′

c ≈ Rc). This constraint imposes a relationship be-
tween the maximum density of background atoms and
the maximum probe intensity n2D . Ω2

c/πR
′2
c Ω

2
p. Above

this critical density the contrast of the image would de-
crease due to the blockade effect, where only one atom
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FIG. 3. Simulated absorption images of atom distribu-

tions including photon shot noise and atomic density

fluctuations. In (a), without the coupling beam, a regular
absorption image of the background atoms is obtained. The
color code indicates absorption. With the coupling on (b)
the background atoms are rendered transparent, except for
those in the vicinity of a Rydberg atom. Parameters of the
simulation can be found in the text.

can contribute to the EIT signal, while the remainder
act as two-level atoms and couple resonantly to the probe
laser[11, 17]. In general, the maximum signal-to-noise ra-
tios (see supplementary material) are achieved for large
coupling strengths Ωc and long exposure times τ , but
in practice these will be limited by the available laser
power and by the required time resolution, which should
be compared to the typical lifetime of a Rydberg atom
(∼ 100 µs).

To show the potential of this imaging scheme we have
carried out numerical calculations of the EIT imaging
process on simulated distributions of Rydberg atoms ex-
cited from a quasi-2D ideal gas. This situation can be
realized with an optical dipole trap made using cylin-
drically focused Gaussian beams. Of particular in-
terest for current experiments is the possibility to di-
rectly observe strong spatial correlations between Ryd-
berg atoms induced by interactions in an otherwise dis-
ordered gas [14, 16, 18].

We use a simple semi-classical model to simulate the
excitation of Rydberg atoms during a chirped Rydberg
excitation pulse. The model is closely related to those
used to describe optical control of cold collisions [19, 20].
We consider a thermally distributed gas of 25 000 back-
ground atoms with a peak density n2D = 40 atoms/µm2

and a cloud radius of σ = 10µm. Each atom can be
in either the electronic ground state or a Rydberg state.
We take the strength of the Rydberg-Rydberg interac-
tions as 2π × 50 GHz µm6, typical of the 55S state [21].
The detuning of the coupling field is swept from 0 to
+200 MHz within 6 µs with an effective Rabi frequency
of Ω = 2π × 2.0 MHz. During each time step atoms can
undergo a transition to the Rydberg state with a prob-
ability estimated from the Landau-Zener formula [22].
Successive excitation events are treated independently,
however the previously excited atoms influence succes-

sive transitions through the Rydberg-Rydberg interac-
tions. This model also includes the effects of mechanical
forces between Rydberg atoms by simultaneously solv-
ing the classical equations of motion for each Rydberg
excited atom.

We then calculate absorption images of the simulated
Rydberg distributions by numerically solving the optical
Bloch equations for the background atoms at each spatial
position, accounting for the level-shifts produced by all
Rydberg atoms. From the mean intensity at each pixel
we generate Poisson distributed photon-shot noise. Sim-
ilarly, a reference image is generated with uncorrelated
noise for background division. Fig. 3 shows calculated
absorption images without and with the coupling laser
from a single run of the simulation. Each pixel corre-
sponds to a region of (0.5µm)2 in the plane of the atoms
and we assume a numerical aperture of 0.25 and an ex-
posure time of 10µs. For the EIT ladder system, we take
the 87Rb states, |5S1/2, F = 2,mF = 2〉 for the ground
state, |5P3/2, F = 3,mF = 3〉 for the intermediate state,
and |r = 28S〉 for the excited state. The decay rates
are Γp = 2π × 6.1 MHz and Γc ≈ 2π × 10 kHz, and for
the coupling laser we assume Ωc = 2π × 50MHz. Laser
line widths of 2π × 1MHz were assumed for both probe
and coupling lasers. The interactions between |55S〉 and
|28S〉 states were calculated to obtain a van der Waals
coefficient of C6(28S − 55S) = −2π × 8.7MHzµm6 giv-
ing Rc = 0.59µm. Interactions between background
atoms are taken as C6(28S− 28S) = 2π× 10.1MHzµm6

(R′

c = 0.61µm). For these parameters the optimal signal-
to-noise ratio is obtained for n2D ≈ 40 atoms/µm2. The
probe intensity (Ωp = 2π × 5.8MHz) is chosen such that
on average the |r〉 state density remains below 1 per πR′2

c .
Such parameters are readily achieved in current experi-
ments with quasi-2D atomic gases [23].

In the background region of the image the signal is
dominated by photon-shot noise, while at the center
atom-shot noise dominates. With the coupling laser on
the ground state atoms are rendered mostly transpar-
ent, except for regions of high absorption around each
Rydberg atom (Fig. 3b). The locations of the individ-
ual Rydberg atoms are clearly resolved in the image as
bright (absorbing) spots with a spatial extent of 2.3 µm
FWHM comparable to the assumed optical resolution.
One can easily envisage higher resolutions using state-of-
the-art imaging systems [7], with the fundamental limit
given by the density of background atoms surrounding
the impurities. The signal-to-noise ratio of our images
is sufficiently high that we can fit the position of each
Rydberg atom with subpixel precision.

Despite the simplicity of the excitation model, the final
distribution of Rydberg atoms appears highly-correlated,
reproducing some of the features of a full quantum me-
chanical treatment [16]. To characterize the translational
order of the simulated Rydberg distributions, we calcu-
late the pair distribution function g(r) from 15 simulated
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FIG. 4. Pair distribution function computed for simu-

lated Rydberg images from 15 realisations. The inset
shows the averaged two-dimensional autocorrelation function
as computed from the absorption images. Taking the radial
average gives g(r)−1 as shown in the main figure (solid black
line). The shaded bars show g(r)− 1 with 0.5 µm bin size as
obtained from the simulated Rydberg atom coordinates. The
clear shell structure which reflects translational order between
nearest and next-nearest neighbours is preserved by the im-
ages.

images (Fig. 4). To account for the inhomogeneous den-
sity distribution we also normalize by the autocorrelation
of the mean image (see supplementary material). For a
random distribution of atoms g(r) ≈ 1. Larger correla-
tion values indicate an enhanced probability to find two
Rydberg atoms at a given separation, while lower val-
ues indicate the absence of pairs. Since there is no pre-
ferred orientation in our system g(r) takes on cylindrical
symmetry. We clearly observe a shell with g(r) ≈ 0 at
a radius of ∼2.5 µm which reflects the strong blockade
of excitation due to Rydberg-Rydberg interactions. At
larger distances, we observe two positive-correlated shells
(around 4 and 8 µm), which indicate translational cor-
relations between nearest- and next-nearest neighbours.
The observed shell structure decays rapidly indicating
the absence of true long-range order. We note very simi-
lar behaviour of g(r) for the raw atom positions (shaded
bars). From this we conclude that the information re-
garding density-density correlations can be reliably ex-
tracted from the images, even under realistic imaging
conditions.

We have also computed the angular correlation func-
tion Φ(θ) at the radius of the first shell (see supplemen-
tary material). This gives the probability, starting from
an atom to find two neighbours forming an angle θ. We
observe the presence of two peaks at ∼1.1 and ∼5.3 rad,
corresponding closely to π/3 and 5π/3, reflecting the 6-
fold symmetry present among most nearest-neighbours.
Even more information could be obtained from these im-
ages by studying higher-order correlation functions, or
by first estimating the Rydberg atom positions to fully
characterize the many-body state.

Our new imaging method provides the means to opti-
cally image individual atoms within a dense atomic gas
using Rydberg state electromagnetically induced trans-
parency. The conditions we find to optimise the signal
closely match those of current cold atom experiments.
As an example of the full potential of this new imaging
scheme we have carried out numerical simulations of Ry-
dberg atoms excited from a quasi-2D gas. Remarkably,
this simple model already gives rise to the appearance of
strong spatial correlations between Rydberg atoms. The
EIT imaging scheme provides the means for single-shot,
non-destructive and time resolved images of such many-
body states. We can foresee numerous other applications
of the EIT imaging method. For example, Rydberg state
EIT has already been used to measure spatially inho-
mogeneous electric fields near a surface [12]. Another
exciting prospect would be to directly image single ions
within an atomic gas which could be directly observed
in current experiments [24]. Closely related ideas could
be used to realise a single atom optical transistor [25] or
to impose non-classical spatial correlations onto the light
field [26].

We would like to thank J. Evers, B. Olmos and I.
Lesanovsky for valuable discussions. This work is sup-
ported in part by the Heidelberg Center for Quantum
Dynamics and the Deutsche Forschungsgemeinschaft un-
der WE2661/10.1. SW acknowledges support from the
EU Marie-Curie program (grant number PERG08-GA-
2010-277017).

Note added.– During preparation of this manuscript we
became aware of related work [27]

SUPPLEMENTARY MATERIAL

Influence of noise

We provide the criteria to optimize the quality of im-
ages in the presence of realistic noise sources. Suppose
an impurity atom is situated in region (A) and we wish
to distinguish its position from another region (B) by

measuring the difference in transmission ∆T . N
(A/B)
ph is

the number of detected photons (proportional to CCD
counts; we assume a quantum efficiency ≈ 1) and Nr

is a reference used to normalize probe intensity varia-
tions. We consider the resonant case (∆p = ∆c = 0)
since this maximizes the contrast while keeping the den-
sity of atoms in state |r〉 small. In region (A) the ab-
sorption is greatly enhanced and NA

ph ≈ TANr with
TA = exp (−σ0n2DIm[χ]) and σ0 is the resonant absorp-
tion cross-section for the probe transition. In region (B)
Im[χB] ≈ 0 therefore ∆T > 0.

The precision with which a measurement of ∆T can be
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made depends on the noise in both regions:

var(∆T )≈
var(Nr)〈N

(A)
ph 〉2

〈Nr〉4
+
var(N

(A)
ph )

〈Nr〉2
+
2var(Nr)

〈Nr〉2
.

We assume Poisson distributed noise for the inten-
sity and density fluctuations, so var(Nr) = 〈Nr〉 and
var(Nph) ≈ 〈TA〉〈Nr〉+〈Nr〉

2var(TA). Atom shot noise is
accounted for by var(TA) = σ2

0Im[χA]
2〈TA〉

2n2D/a, with
a the area of each region (for example the area of a pixel),

var(∆T )=
〈TA〉+〈TA〉

2

〈Nr〉
+

2

〈Nr〉
+
σ2
0n2D

a
Im[χA]

2〈TA〉
2.

The first two terms can be attributed to photon shot
noise while the last term is from density fluctuations.
Including saturation, Im[χA] = Γ2

p/(Γ
2
p+2Ω2

p). This sug-
gests that the signal-to-noise ratio (SNR) can be made
arbitrarily high for large 〈Nr〉 and large n2D. How-
ever, to ensure that interactions between background
atoms can be neglected, we require that the density
of atoms in the |r〉 state is kept low (ρrrn2DπR′2

c .

1). For strong coupling ρrr ≈ Ω2
p/Ω

2
c and this implies

〈Nr〉 . aτΩ2
c/σ0n2DπR′2

c Γp, with exposure time τ . In
the limit of strong absorption 〈TA〉 ≪ 1, and substitut-
ing for the maximum value of 〈Nr〉:

var(∆T ) =
2σ0Γpn2DπR′2

c

aΩ2
cτ

(3)

×

(

1 +
Ω2

cτσ0

2πΓpR′2
c

Im[χA]
2 exp (−2σ0n2DIm[χA])

)

with Im[χA] =
(

1 + 2Ω2
c/Γ

2
pπR

′2
c n2D

)

−1
.

In general, the best SNR is obtained for large coupling
strengths Ωc and long exposure times τ , but in practice
these will be limited by the available laser power and by
the required time resolution. To find the optimal val-
ues for n2D and Ωp given fixed values of τ and Ωc we
numerically maximize the SNR using Eq. (3). The final
parameters used in the paper include the additional ef-
fect of finite laser linewidths which tends to increase ρrr
slightly for the same Ωp. This shifts the optimum density
to slightly lower values. Assuming Ωc = 2π×50 MHz and
τ = 10 µs we find nopt

2D = 40µm−2 (neglecting linewidth

nopt
2D ≈ 50µm−2).

Rydberg excitation model

To simulate the excitation of Rydberg atoms by a
chirped laser pulse we consider a randomly (thermally)
distributed ensemble of atoms. Each atom is treated as
a point-like classical particle which can be in either the
electronic ground state or in a Rydberg state. As the
coupling field is swept from low to high detuning, each
atom can undergo a transition. The transition probabil-
ity is estimated using the Landau-Zener (LZ) formula for

a sweep through an avoided crossing [22]. The effect of
Rydberg-Rydberg interactions causes level shifts for the
nearby atoms which subsequently alters their probabil-
ity to be excited by the laser pulse, giving rise to strong
spatial correlations.
The simulation starts with zero detuning for the exci-

tation laser and one atom is chosen at random to start
in the Rydberg state. In the next time step the laser
frequency is varied according to a fixed sweep rate, and
we calculate all level shifts due to Rydberg-Rydberg in-
teractions. From the atoms which crossed the resonance
condition in the previous timestep we randomly select
newly excited atoms based on their LZ probabilities. Any
successful excitation immediately influences all other sur-
rounding atoms, and thus the simulation also reproduces
the excitation blockade effect. For each time step we also
solve the Newtonian equations of motion of the Rydberg
atoms to account for the interparticle mechanical forces.
We do not consider the motion of the ground state atoms
for the simulation (frozen gas regime). The simulation re-
turns a list of the final coordinates of all the ground-state
and Rydberg atoms within the gas after the laser sweep.
These coordinates are then used as inputs to calculate
the corresponding absorption image.

Correlation analysis

To characterize the translational order of the simulated
Rydberg distributions, we define a pair distribution func-
tion from the absorption images n(~r):

G[n](~r) =

∫

d2r0 n(~r0)n(~r0 + ~r)
(∫

d2r0 n(~r0)
)2 . (4)

To account for the inhomogeneous density and finite size
of the system we define the following rescaled pair distri-
bution function :

g(~r) =
〈G2[n]〉

G2[〈n〉]
(5)

where the brackets reflect averages over independent re-
alisations. For a random distribution of atoms g(r) ≈ 1.
Larger correlation values indicate an enhanced probabil-
ity to find two Rydberg atoms at a given separation,
while lower values indicate the absence of pairs.
We can also extract information about the angular cor-

relations in the images. For this we define the angular
correlation function :

Φ(θ)∝

〈

∫

d2r0 n(~r0)
∫

dφ n(~r0+Rnn~eφ)n(~r0+Rnn~eφ+θ)
(∫

d2r0 n(~r0)
)3

〉

(6)
where ~eφ is defined as the unit vector with angle φ with
respect to a reference axis ~ex, and Rnn is the radius of the
first positive shell of the pair distribution function. This
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FIG. 5. Angular correlation function computed from

15 simulated images. Angular correlation function Φ(θ)
taken at the radius of the first shell. We observe peaks at
angles around ±π/3 indicating a six-fold symmetry among
nearest neighbours.

gives the probability, starting from an atom and one of
its nearest neighbours, to find a second nearest neighbour
forming an angle θ with the first.

Figure 5 shows the angular correlation function com-
puted from 15 simulated images at the radius of the first
shell. We observe two clear peaks at ∼ π/3 and ∼ 5π/3
reflecting the 6-fold symmetry present among nearest
neighbours. The other peaks at θ = 2nπ/6, n = 2, 3, 4
are washed out indicating the absence of true long range
orientational order.
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