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Streaked photoemission metrology allows the observation of an apparent relative time delay be-
tween the detection of photoelectrons from different initial electronic states. This relative delay
is obtained by recording the photoelectron yield as a function of the delay between an ionizing
ultrashort extended ultraviolet (XUV) pulse and a streaking infrared (IR) pulse. Theoretically,
photoemission delays can be defined based on i) the phase shift the photoelectron wavefunction
accumulates during the release and propagation of the photoelectron (“Wigner delay”) and, alter-
natively, ii) the streaking trace in the calculated photoemission spectrum (“streaking delay”). We
investigate the relation between Wigner and streaking delays in the photoemission from atomic and
solid-surface targets. For solid targets and assuming a vanishing IR-skin depth, both Wigner and
streaking delays can be interpreted as an average propagation time needed by photoelectrons to
reach the surface, while the two delays differ for non-vanishing skin depths. For atomic targets, the
difference between Wigner and streaking delays depends on the range of the ionic potential.

PACS numbers: 42.65.Re, 79.60.-i,

I. INTRODUCTION

Streaked photoemission spectroscopy is increasingly
applied to resolve ultra-fast electronic processes at the
natural timescale (≈ 1 atomic unit = 2.4 × 10−17s = 24
attoseconds (as)) of the motion of valence electrons in
matter. Streaking metrology uses ultra-short pulses of
extreme ultraviolet (XUV) radiation to emit electrons
into the electric field of a delayed infrared (IR) laser
pulse. The XUV and IR pulses in this pump-probe setup
are phase coherent, and the yield of emitted photoelec-
trons is recorded as a function of the delay ∆t between
the two pulses [1]. The resulting energy-resolved pho-
toemission spectra show stripes that oscillate in ∆t with
the period of the IR-laser electric field. These streak-
ing traces occur in distinct photoelectron kinetic energy
intervals that are determined by the spectral width of
the XUV pulse, the IR-laser intensity, and the density of
states of the target. For photoemission out of energeti-
cally resolved discrete atomic levels, streaking traces can
be related to a given initial state, while for photoemission
from electronic states in solids they are modulated by the
density of states within a given band of occupied states.
The analysis of streaked photoemission spectra proceeds
by fitting the center of energy (COE) of a given streak-
ing trace as a function of ∆t to a sine function with an
adjustable phase, thereby mapping energy shifts induced
by the IR laser onto a time delay between the apparent
release of the photoelectron and its arrival of the XUV
pulse [2].

Streaked photoelectron spectra from localized states
of atomic targets [3] and both, delocalized conduction
band and localized core-level bands of solids [4] have re-
cently been recorded, leading to an ongoing debate about
i) the interpretation of the deduced photoemission time
delays and ii) the possibility of distinguishing delay con-
tributions from the primary XUV-photorelease process
and subsequent photoelectron propagation in the ionic

potential of the target and the streaking IR-laser elec-
tric field [5–8]. Applying streaking metrology to neon
atoms, Schultze et al. [3] measured a relative photoe-
mission streaking delay of ∆τS = 21 ± 5 as for the
release of electrons from 2p orbitals relative to emis-
sion from 2s orbitals. The authors theoretically ana-
lyzed their measured relative delay in terms of the rel-
ative Wigner delay ∆τW (ǫ) that is given by the energy
derivative of the spectral phase of the calculated pho-
toelectron wave function [9, 10] and averaged ∆τW (ǫ)
over the spectral profile of the XUV pulse. The differ-
ence between their calculated averaged relative Wigner
delays ∆τW for emission from the 2s and 2p orbitals
did not exceed ∆τ (2p − 2s) = τW (2p) − τW (2s) = 6.4
as, even for calculations that included electronic correla-
tion in neon at the multiconfiguration-Hartree-Fock level.
The authors linked the mismatch between their measured
relative streaking and calculated Wigner delays to the
extreme sensitivity of the photoelectron wavefunction’s
spectral phase to electronic correlation effects in multi-
electron atoms.

The same experiment [3] was subsequently analyzed by
Kheifets and Ivanov [5] based on numerical solutions of
the time-dependent Schrödinger equation (TDSE) for a
single active electron moving in the Hartree-Fock poten-
tial of a Ne+ ion and, in a separate approach, by including
electronic correlation effects to some extent by numeri-
cally solving a set of coupled equations in a random-phase
approximation-with-exchange model. These calculations
reproduce only less than one half of the measured relative
delay of 21 as, and the authors speculated that the much
larger observed relative delay might not be due solely
to the XUV-induced release process, even if electronic
correlation effects were accurately accounted for. The
measured relative streaking delay might thus include sig-
nificant contributions from the photoelectron’s interac-
tion with the streaking IR-laser electric field. Indeed, the
single-electron TSDE calculations by Ivanov [7] showed
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that the IR electric field has a considerable influence on
the Wigner delay for photoemission. The question then
arises whether this IR-dressed Wigner delay can be used
to interpret the measured relative streaking delay. As
shown in our previous investigation of time-resolved pho-
toemission from a one-dimensional (1D) model hydrogen
atom [6], the streaking delay is independent of the streak-
ing laser field intensity. This was confirmed recently in
a full-dimensionality calculation for atoms by Nagele et

al. [8].

Investigating photoemission from a tungsten surface,
Cavalieri et al. [4] have measured a relative streaking de-
lay of ∆τS(CB−4f) = τS(CB)−τS(4f) = 110±70 as for
electrons emitted from 4f core levels relative to electrons
released from the conduction band. This relative delay
was interpreted as the delayed onset of IR streaking, i.e.,
as the difference in time needed by 4f and conduction
band electrons to reach the surface [4, 11]. However, as
we will argue in Sec. III B below, this interpretation is
only valid under the assumption that the streaking IR
field is fully screened inside the solid. We will also show
in this work that Wigner and streaking delays become
identical only in this limit of a sudden onset of IR streak-
ing at the surface. We will show that the streaking delay
sensitively depends on the IR-skin depth δL. Therefore,
the intuitive interpretation of relative streaking delays
in terms of an effective photoelectron path length inside
the solid becomes questionable for realistic values of δL,
depending on how exactly the IR electric field becomes
screened in the solid.

While only relative streaking delays can be deduced
from measured photoemission spectra, Wigner time de-
lays are conveniently derived from calculated photoelec-
tron wave functions. Wigner and streaking delays in
time-resolved atomic photoemission were examined re-
cently [7, 8], and the nature of delays within the general
context of scattering, decay, and photo- and particle-
induced emission processes in atomic, nuclear, other
branches of physics has been discussed by theorists for
more than half a century [9, 10] (for a recent review
see [12].) In this work, we investigate the relation be-
tween Wigner and streaking delays for photoemission
from atoms in the gas phase and solid surfaces. In
Sec. II, we present the underlying theoretical models
and our schemes for calculating time delays in photoe-
mission. In Sec. III, we compare and discuss our numer-
ical results of time-resolved photoemission spectra from
atoms (Sec. IIIA) and core-level and conduction bands
of solid targets (Sec. IIIB). In particular, we investigate
the dependence of the corresponding time delays on the
XUV-photon energy, the effective range zc of the atomic
model potential, initial state, IR-skin depth, and position
of the Fermi level. Our conclusions follow in Sec. IV.
Unless indicated otherwise, we use atomic units (a.u.)
throughout this work.

II. DEFINITION AND COMPUTATION OF

WIGNER AND STREAKING TIME DELAYS

The essence of the time delay introduced by Wigner
and Smith [9, 10] can be understood for the elementary
example of potential scattering in one spatial dimension,
by representing the projectile as an incident wave packet

δψin(z, t) =

∫

dkake
ikz−iεkt (1)

in terms of a superposition with amplitudes ak of plane
waves with momenta k centered about kc and energies
εk. Scattering subject to the projectile-target-interaction
potential V of finite range results in the outgoing wave

δψout(z, t) =

∫

dkake
iϕkeikz−iεkt (2)

for which each spectral component is phase shifted by ϕk

relative to the corresponding component of the incident
wave. Depending on the values of the scattering phase
shifts ϕk, wave fronts and center of the scattered wave are
shifted relative to the incident wave. The phase shifts ϕk

thus quantify the effect of V on δψin. Depending on the
nature of V , wave fronts of all plane-wave components
and the center and crest of the scattered wave packet
may appear behind or ahead of the corresponding terms
of the incident wave packet. The scattered wave packet
can thus be characterized by a positive or negative delay
time τ , depending on whether its wave fronts or center
are detected after or before they would be detected in
the absence of V , respectively. More precisely, the phase
shifts of individual traveling plane wave components lead
to spectral delays

τW (εk) =
∂ϕk

∂εk
, (3)

which, evaluated at the spectral center εc = k2c/2 of the
incident wave packet, define the Wigner delay [9, 10]

τIW = τW (εc). (4)

An alternative method for assessing the delay of the
scattered relative to the incident wave packet is given in
terms of the expectation values for the position,

〈z〉(t) =
∫ ∞

0

dzz|δψout(z, t)|2, (5)

and velocity,

〈v〉 =
∫ ∞

0

dkkδφout(k, t)|2, (6)

of the scattered wave packet at a sufficiently large time
t > T after the interaction according to [12, 13]

〈z〉 = 〈v〉(t − τIIW ), (7)
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FIG. 1: (Color online) Interpretation of the Wigner delay in
the photoionization of atoms. The solid line shows schemati-
cally the expectation values for the position 〈z〉 of the photo-
electron wave packet. The photoemission Wigner delay τ II

W is
determined by a straight-line extrapolation of 〈z〉 according
to Eq. (7) (dashed line). The XUV pulse is centered at t = 0.

where δφout(k, t) is the Fourier transformation of
δψout(z, t). The time T is is chosen so that V (〈z〉(t >
T )) ∼ 0 and all spectral phases ϕk and 〈v〉 of the outgo-
ing wave packet remain time-independent to a very good
approximation for t > T . This fitting procedure can be
understood classically by identifying the expectation val-
ues for position and velocity in Eq. (7) with the motion
of a point particle. We refer to both, τIW and τIIW , as
“Wigner delay” since it can be shown [12] that they are
closely related by the expression

τIIW =

∫

dk|δφout(k, t)|2τIW (εk). (8)

Indeed, our numerical results in Sec. III below confirm
that τIW and τIIW are almost identically.
Both definitions of the Wigner time delay, τIW and

τIIW , have been used to characterize the scattering pro-
cesses [12] and can also be applied to determine delays in
photoemission. They were recently used to interpret the
relative delay in the IR streaked XUV spectra from the
2s and 2p shells in neon [3, 5, 7]. We thus believe that it
is important to carefully investigate the relation between
the Wigner and streaking delays.
We calculate the two Wigner delays for photoioniza-

tion by solving the TDSE for photoelectron wave packets
δψ(z, t) emitted from an initial state ψi(z, t) [6],

i
∂

∂t
δψ(z, t) =

[

−p
2

2
+ V (z)

]

δψ(z, t)

+ zEX(t)ψi(z, t), (9)

where p = id/dz is the momentum operator and
ψi(z, t) = ei|εB |tψi(z) the stationary initial state with
binding energy εB. For convenience we drop the sub-
script “out” and designate the outgoing photoelectron
wave simply as δψ(z, t). We consider photoemission by
an attosecond XUV pulse from either the ground state of

a 1D model atom or from the energetically lowest bands
of occupied initial states in the periodic 1D model poten-
tial of a solid. For the atomic case, we choose ψi(z, t) to
be the ground state of the model atom with a potential
V (z). For photoemission from a surface, ψi(z, t) desig-
nates Bloch waves from within a given band with Block
momenta ki.
We represent the coupling of the XUV pulse electric

field EX to the electron in the dipole-length form and
assume a Gaussian pulse profile,

EX(t) ∼ e−2 ln 2(t/τX)2 sin(ωXt). (10)

We assume a pulse duration τX = 300 as and a variable
central frequency ωX .
We propagate the photoelectron wave packet from

−4 fs to 8 fs on a spatial grid that extends over 32,000 a.u.

and calculate the Wigner delays τI,IIW according to (4)
and (7). Rewriting the photoelectron wave packet at the
large time T ≫ τX as [6, 7]

δψ(z, t = T ) ∼
∫

dkψk(z)dkẼX(εk − εB)e
−iεkT , (11)

where ψk(z) is a continuum eigenstate in the potential
V (z) with energy εk, dk = 〈ψk|z|ψi〉 the dipole matrix

element, and ẼX(ω) =
∫

dtEX(t)eiωt the spectrum of
EX(t), demonstrates that the Wigner delays depend on
both, the electron release during the dipole coupling of
the XUV electric field and the propagation of the photo-
electron in the continuum.
In order to calculate streaking delays from the streaked

photoemission spectra, the influence of the streaking IR
laser field on the active electron need to be investigated.
The IR streaking effect on the release and propagation
of the photoelectron is included by replacing p with
p + AL(z, t − ∆t) in Eq. (9). The influence of the IR-
laser on the initial state can be included by numerically
propagating the initial state in the IR-laser electric field
according to [6],

i
∂

∂t
ψi(z, t) =

{

1

2
[p+AL(z, t−∆t)]

2
+ V (z)

}

ψi(z, t),

(12)

where ∆t is the delay between the centers of the XUV
and IR pulses, and the convention is used that ∆t > 0
corresponds to the XUV pulse preceding the IR pulse.
We model the vector potential of the IR-laser pulse as

AL(t) = A0 sin
2 (πt/τL) cos [ωL (t− τL/2)] (13)

for 0 ≤ t ≤ τL and set AL to 0 otherwise. As pulse
parameters, we choose the central photon energy ~ωL =
1.57 eV (corresponding to a wavelength of λL = 800 nm),
peak intensity IL = A2

0ω
2
L/2 = 5×1011W/cm2, and pulse

length τL = 8 fs.
Assuming a free-electron dispersion (ε = k2/2), the

energy-differential photoemission probability is given by

P (ε,∆t) =
1

k
|δφ(k,∞; ∆t)|2 , (14)
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where δφ(k,∞; ∆t) is the Fourier transform of δψ(z, t→
∞; ∆t). The XUV-IR delay-dependent COE for a given
streaking trace is [2]

ECOE(∆t) =
1

2Ptot(∆t)

∫

dk |k δφ(k,∞; ∆t)|2 , (15)

with the total emission probability

Ptot(∆t) =

∫

dk |δφ(k,∞; ∆t)|2 . (16)

After calculating ECOE(∆t) for a range of XUV-IR de-
lays −τL/2 ≤ ∆t ≤ τL/2, we obtain the streaking delay
τS relative to AL by fitting the parameters a, b, and τS
to the expression [2, 6]

ECOE(∆t) = a+ bAL(∆t− τS). (17)

For XUV photoemission from solids, Eqs. (14)-(17) re-
main valid. In this case, the initial states in Eq. (9) are in-
dividual Bloch waves with momenta in the first Brillouin
zone of either core-level or conduction band. We will
show in Sec. III B below how to calculate band-averaged
results.

III. NUMERICAL RESULTS

A. One-dimensional model hydrogen atom

In this section, we discuss our numerical results for
Wigner and streaking delays for XUV photoemission
from the ground state with binding energy εB = 13.6 eV
of the soft-core Coulomb potential

V (z) = Vc(z) = −1/
√

z2 + 2. (18)

In the calculation of the Wigner delay τIW , the direct nu-
merical determination of the phase of the photoelectron
wave packet according to ϕk = ln δφ(k, T )/|δφ(k, T ) is
inaccurate or impossible for values of k where |δφ(k, T )|
is extremely small. Furthermore, εc is difficult to deter-
mine from δφ(k, T ) [see Fig. 2 (a)]. In order to overcome
these two difficulties, we fit the real part Re[δφ(k, T )] of
the calculated photoelectron wave packet to the function

f(ε) =Ae−2 ln 2[(ε−εc)/∆ε]2 cos(ϕk) (19)

with

ϕk = α(ε− εc) + β(ε− εc)
2 + γ, (20)

and determine (by least-squares fit over a large range
of ε = k2/2 values) the parameters εc, ∆ε, α = τIW ,
β and γ. As shown in Fig 2 for photoionization with
~ωX = 25 and 50 eV, the spectra of the calculated
(by numerically solving the TDSE) and fitted photoelec-
tron wave packets are in excellent agreement. Since ac-
cording to Eq. (11) the XUV pulse spectral profile is

−1

 0

 1

 2

(a)−hωX=25 eV 

Cal.
fit

 0

 0.5

 1

 1.5

−15 −10 −5  0  5  10  15

R
e[

δφ
](

k,
T

) 
[a

rb
.u

]

ε−εc [eV]

(b)−hωX=50 eV Cal.
fit

FIG. 2: (Color online) Real part of the calculated and the
fitted momentum-space photoelectron wave packets for ion-
ization from 1D model hydrogen atoms by XUV pulses with
energies of (a) 25 eV and (b) 50 eV.

imprinted on the photoelectron wave packet, we find
that the fitted values ∆ε(~ωX = 25 eV)=5.96 eV and
∆ε(~ωX = 50 eV)=6.11 eV are close to the spectral
width ~∆ωX = 6.08 eV of the XUV pulse.

Figure 3 shows the Wigner delays τI,IIW for the 1D
model hydrogen atom, calculated according to Eqs. (7)
and (19)-(20), in comparison with the streaking delay τS ,
calculated as described in Sec. II [6]. All delays are neg-
ative. The two Wigner delays are almost identical and
their absolute values are much larger than the streaking
delay. Having established that the two Wigner delays al-
most coincide for all parameters considered in this work,
we only show results for τIIW from now on and drop the
superscript “II” for convenience, unless noted otherwise.
In order to investigate the difference between the Wigner
and streaking delays, we modify the infinite range of the
potential Eq. (18) with a Wood-Saxon factor,

Vs(z) = Vc(z)

[

1− 1

1 + e−(|z|−zc)/a

]

. (21)

The range of Vs(z) is controlled by zc. The parame-
ter a defines the lengths over which Vc(z) is screened to
approach zero. In our calculation, we use a = 1. For
zc → ∞ Vs converges to Vc [Fig. 4(a)]. We numerically
verified that for values of zc larger than a few atomic
units, the ground-state wavefunction and energy in Vs(z)
are practically independent of zc [Fig. 4(b)].
In Fig. 5 and Table I we compare the Wigner and

streaking delays at three different ranges zc. The com-
parison shows that for an interaction range slightly larger
than the extent of the ground-state probability distribu-
tion, say, zd ∼ 2, the Wigner and streaking delays coin-
cide [see Fig. 5 (a)]. In contrast, for zc ≫ zd, |τW | > |τS |,
and both delays approach their values for the 1D model
potential Eq. (18). In this case the difference of the two
delays is largest at lower photoelectron kinetic energies
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FIG. 3: (Color online) Comparison of the Wigner delays τ I,II

W

and the streaking delay τS for photoionization of 1D model
hydrogen atoms as a function of the XUV-photon energy ~ωX .
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FIG. 4: (Color online) The modified Coulomb potential (21)
(a) and its ground state wavefunction (b) for three different
interaction ranges zc.

[Fig. 5 (b) and (c)]. Comparison of the three graphs also
shows that the Wigner delay is more sensitive to changes
in zc than the streaking delay.

We emphasize that Wigner delays are calculated with-
out including the action of an IR-laser pulse, which might
give rise to the question of whether we should instead
compare the streaking delay with the Wigner delay ob-
tained in the same IR field, as mentioned in the intro-
duction. Obviously, inclusion of the IR-laser electric field
would change the Wigner delay [7]. In this case the pho-
toelectron velocity in Eq. (7) would depend on the XUV-
IR delay ∆t, and the use of this equation would deter-
mine a Wigner delay τIIW that varies with ∆t and the
IR-pulse intensity. The streaking delay, in contrast, does
not depend on ∆t. It is also independent on the inten-
sity of the streaking laser, if this intensity is sufficiently
low [2, 6, 8]. Therefore, it is only meaningful to compare
streaking delays with IR-field-free Wigner delays.

By computing photoemission spectra and streaking de-

−60

−40

−20

 0

τ 
[a

s]

(a) zc=10 a.u. τS
τW

−120

−80

−40

 0

τ 
[a

s]

(b) zc=50 a.u.
τS
τW

−160
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−80

−40

 0

 20  40  60  80  100

τ 
[a

s]

−hωX[eV]

(c) zc=100 a.u.
τS
τW

FIG. 5: (Color online) Comparison of the Wigner delay τW
and the streaking delay τS for three interaction ranges zc in
Eq. (21) as a function of the XUV-photon energy ~ωX .

~ωX [eV] zc [a.u.] τS[as] τW [as]
30 10 -37 -38

50 -41 -71
100 -37 -85

50 10 -12 -12
50 -17 -22
100 -14 -26

70 10 -6 -7
50 -9 -11
100 -8 -13

TABLE I: Streaking and Wigner time delays from Fig. 5 for
three range parameters zc and three XUV-photon energies
~ωX .

lays with and without including the IR vector potential
in Eq. (12), we found that for this atomic target polar-
ization effects of the initial state of the active electron in
the electric field of the streaking laser are negligible. This
is due to the large energy gap between the ground state
and the excited states [6]. In contrast, the initial state
polarization is relevant for the case of photoemission from
solid surfaces discussed in the following section.

B. One-dimensional Solid

We model the 1D solid surface as a row of N equidis-
tant atomic layers and represent each atom by a Gaussian
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FIG. 6: (Color online) (a) Model lattice potential consisting of
equally-spaced Gaussian potential wells. (b) Corresponding
band structure with one core-level band and one conduction
band. The dotted line indicates Fermi level εF .

potential well to form the lattice potential

Vlatt(z) = V0 −
A0√
2πσ

N
∑

i=1

e−[z+(i+0.5)alatt]
2/(2σ2), (22)

where alatt is the lattice constant, σ controls the overlap
of the two adjacent atomic potentials, and V0 and A0

are chosen to match the known Fermi energy. We have
oriented the z-axis with increasing values towards the
vacuum side and put the origin (z = 0) at the distance
0.5alatt in front of the top nucleus. Diagonalizing the
time-independent Schrödinger equation

εnψn(z) =

[

−1

2

d2

dz2
+ Vlatt(z)

]

ψn(z) (23)

for N = 47, V0=-0.5, A0=2, alatt = 6, and σ = 0.1alatt,
we obtain the core-level and conduction-level bands
shown in Fig. 6. The Fermi energy is εF = −10.9 eV.
For the calculation of the XUV photoemission spec-

trum, we replace V (z) in Eq. (9) by Vlatt(z) and add
the damping term −ivz/(2λ), with the velocity vz =
√

2(ωX − |εn|), to Vlatt(z), in order to model scatter-
ing of the photoelectrons inside the solid. In a previous
study, we adjusted the electron mean-free path inside the
solid to λ = 5 Å as which corresponds to the minimum
of the universal curve for λ as a function of the electron’s
kinetic energy [14]. We continue to use this value for the
present investigation. In the calculation of the streaked
spectra, we further assume an exponential damping of
the IR-laser field inside the solid,

AL(z, t) = AL(t)
[

ez/δLΘ(−z) + Θ(z)
]

, (24)

−50

 0
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 0  10  20  30  40  50

τ 
[a

s]

Level Index n

−hωX=100 eV

τS

τI
W

τII
W

FIG. 7: (Color online) Streaking and Wigner delays, τS and

τ
I,II

W , for XUV photoemission with ~ωX = 100 eV from the
core-level band of a 1D model solid surface as a function of the
core-level index n. All delays are computed for the electron
mean-free path λ = 5 Å and no penetration of the IR-laser
field into the solid (δL = 0) for the streaking delay.

characterized by the IR-skin depth δL.
Within each band, we use the index n to label Bloch

wave functions ψn with energies εn, starting with ε1 for
the lowest energy Bloch wave at the band bottom. Each
initial Bloch wave below the Fermi level contributes to
the photoemission spectrum with the energy-differential
emission probability

Pn = P (εn,∆t) =
1

k
|δφn(k,∞; ∆t)|2 . (25)

Similarly, each Bloch wave contributes to the COE

ECOE,n(∆t), Wigner delays τI,IIW,n , and streaking delays
τS,n. We first calculate the band-averaged COE

ECOE(∆t) =
1

∑

n Pn

∑

εn<εF

PnECOE,n(∆t) (26)

separately for each band. Next we use Eq. (17) to obtain
the band-averaged streaking delay τS . Similarly, we find
the band-averaged Wigner delays according to

τI,IIW =
1

∑

n Pn

∑

εn<εF

Pnτ
I,II
W,n . (27)

A comparison of streaking and the two Wigner delays
for an XUV-photon energy ~ωX = 100 eV and emission
from the core-level band is shown in Fig. 7 as a function
of the core-level index n. The monotonic increase in level
index n in Fig. 7 is just a coincidence. For other ener-
gies, these delays do not necessary increase with n. As
for the atomic case (cf., Sec. IIIA), we find that the dif-
ference between the two Wigner delays is negligible. We
therefore only present results for τIIW which we denote
simply as τW below. All numerical results shown below
are converged in the number of included atomic layers
N .
Wigner and streaking delays as a function of the XUV-

photon energy ~ωX for photoemission from three indi-
vidual core- and three conduction-band Bloch levels are



7

 0

 200

 400

 600

 800
τ W

,n
 [a

s]

 (a) τW
ε5=−30.77 eV

ε25=−30.63 eV
ε47=−30.50 eV

 0

 200

 400

 600

 800

 40  60  80  100

τ S
,n

 [a
s]

−hωX[eV]

(b) τS

FIG. 8: (Color online) Wigner (a) and streaking (b) time de-
lays for XUV photoemission from three core-level Bloch states
with energies ε5, ε25, and ε47 given relative to the ionization
limit. Streaking delays are computed for the electron mean-
free path λ = 5 Å and no penetration of the IR-laser field
into the solid (δL = 0).
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FIG. 9: (Color online) Wigner (a) and streaking (b) time de-
lays for XUV photoemission from three conduction-band lev-
els with energies ε1, ε10, and ε30 given relative to the ioniza-
tion limit. The occupied part of the conduction band extends
from ε1 to the Fermi level at εF = −8.22 eV. Streaking delays
are computed for the electron mean-free path λ = 5 Å and
no penetration of the IR-laser field into the solid (δL = 0).

shown in Figs. 8 and 9, respectively. According to its
definition Eq. (7), the Wigner delay can be regarded as
an “effective” propagation time for the photoelectron to
emerge from the solid. For special case δL = 0, the
streaking delay is the travel time photoelectrons need be-
fore getting exposed to the streaking IR field outside the
solid. Therefore, intuitively, for δL = 0 only, one would
expect the streaking delay to be almost identical to the
Wigner delay. As Figs. 7-10 show, this is confirmed by
our numerical results.
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FIG. 10: (Color online) (a) Band-averaged Wigner and
streaking delays for XUV photoemission from the (a) con-
duction band and (b) core-level band. Streaking delays are
computed for the electron mean-free path λ = 5 Å and no
penetration of the IR-laser field into the solid (δL = 0).

It is interesting to observe that, for emission from the
core-level band, the band-averaged Wigner and streak-
ing delays decrease monotonously with increasing ~ωX

[Fig. 10 (a)]. This decrease closely follows the effec-

tive propagation time λ/
√
2ε of photoelectrons inside

the solid prior to reaching the solid-vacuum interface at
z = 0, even though delay contributions from individual
Bloch levels, τn (see Fig. 8), do not show this behav-
ior. This confirms the interpretation that band-averaged
Wigner and streaking delays for emission from the core-
level band can be regarded as an average time needed for
a released photoelectron to travel a distance λ inside the
solid [4, 11].

However, this interpretation is not valid for photoemis-
sion from the conduction band, where the band-averaged
delays behave non-monotonously as a function of ~ωX

as shown in Fig. 10(b). A possible explanation for this
difference is the delocalized nature of the conduction-
band Bloch wave. This can be checked by examining
the core-level- band-averaged delay as a function of the
overlap parameter σ in Vlatt(z) and will be discussed in
a forthcoming publication [15]. This means that, even
for δL = 0, the relative delays between photoemission
from the core-level and conduction band can not be due
solely to the photoelectron’s average travel time in the
solid [4, 11].

Since the i) equivalence of τS and τW and ii) the in-
terpretation of streaking delays in terms of an effective
propagation time in the solid are only valid for the spe-
cial case δL = 0, we next investigate the dependence
of photoemission delays on the IR-skin depth δL. Fig-
ure 11 shows the band-averaged streaking delay for emis-
sion from the core-level band for two XUV-photon ener-
gies. These results show a very sensitive dependence of
τS on the IR penetration depth, with τS changing from
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FIG. 11: (Color online) Band-averaged streaking delays for
XUV photoemission with photon energies of ~ωX = 50 and
100 eV as a function of the IR-laser skin depth δL. The elec-
tron mean-free path is λ = 5 Å.
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FIG. 12: (Color online) Band-averaged streaking delay in the
photoelectron spectrum for photoemission from the conduc-
tion band for three values of the Fermi energies εF . λ =
5 Å and δL = 0 are used.

positive to negative delays. In contrast to photoemission
from the energetically isolated ground states of atoms
(Sec. III A), the N Bloch waves form a quasi-continuum
and can be easily hybridized in the IR-laser electric field.
This initial-state hybridization effect is the stronger the
deeper the IR electric field penetrates the solid and ac-
counts for the δL dependence of τS . We note that the
actual IR-skin depth is much larger than the electron
mean-free path, such that the effective depth over which
photoelectrons are assembled is limited by λ, and the
IR-skin depth tends to become irrelevant for the pho-

tocurrent [2]. Accordingly, the photoemission delays in
Fig. 11 converge in the limit of large δL/λ.

Another interesting observation, as shown in Fig. 12, is
that the band-averaged τW and τS from the conduction
band depend on the position of the Fermi level. There-
fore, changing the occupation probability of Bloch waves
in the conduction band, for example, by increasing the
temperature or by doping, will change the band-averaged
delay. This dependence is absent in the core-level band
because all the core levels are below the Fermi level and
fully occupied.

IV. CONCLUSIONS

We have examined the relation between Wigner and
streaking delays in the XUV photoelectron emission
from model atoms and solid surfaces. We showed that
both, the creation of the photoelectron and its propaga-
tion contribute to the Wigner delay. For photoemission
from atoms, the two delays are only identical for short-
range ionic potentials. For photoemission from surfaces,
Wigner and streaking delays become identical only in the
limit of no IR-field penetration into the solid, and both
delays can be interpreted as the travel time of the photo-
electron to the surface. Furthermore, for electron emis-
sion from the core-level band, both delays can be under-
stood as the average time photoelectrons need to travel
a distance equal to the mean-free path in the solid. This
interpretation does not hold for photoelectron emission
from the conduction band. This dissimilarity is expected
to be due to the different (localized versus delocalized)
nature of core and conduction-band levels.

We find that streaking delays are very sensitive to
changes in the IR-skin depth and Fermi energy and de-
viate from Wigner delays for non-zero IR-skin depths.
Their dependence on the substrate temperature, impu-
rities, and adsorbate coverage may leave a measurable
signature in relative photoemission delays.
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