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Conventional and charge six superfluids from melting hexagonal

Fulde-Ferrell-Larkin-Ovchinnikov phases in two dimensions
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1 Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 and
2 Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

We consider defect mediated melting of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and pair den-
sity wave (PDW) phases in two dimensions. Examining mean-field ground states in which the
spatial oscillations of the FFLO/PDW superfluid order parameter exhibit hexagonal lattice sym-
metry, we find that thermal melting leads to a variety of novel phases. We find that a spatially
homogeneous charge six superfluid can arise from melting a hexagonal vortex-anitvortex lattice
FFLO/PDW phase. The charge six superfluid has an order parameter corresponding to a bound
state of six fermions. We further find that a hexagonal vortex-free FFLO/PDW phase can melt
to yield a conventional (charge two) homogeneous superfluid. A key role is played by topological
defects that combine fractional vortices of the superfluid order and fractional dislocations of the
lattice order.

The interplay between solid order and superconducting/superfluid order has become an issue of tremendous in-
terest in a variety of physical systems. The putative supersolid phase of 4He1 has provided a strong motivation to
understand the relationship between these two orders. Additionally, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
phase2,3, recently observed in ultracold 6Li atom systems4, provides another compelling example. This phase exhibits
translational symmetry breaking through the formation of a paired fermion superfluid lattice over which the spatial
average of the superfluid order is zero. Related pair density wave (PDW) states, a generalization of FFLO phases,
are relevant in CeCoIn5

5–8 and in the cuprates La1−xBaxCuO4 and La1.6−xNd0.4SrxCuO4
9,10. Also related to both

PDW and FFLO phases are vortex-antivortex (v-av) lattice phases. Such phases have been discussed in the context
in 2D superfluid 4He11 and superconducting thin films12, where, at high temperatures there exist thermally excited
vortices and antivortices. It is argued that if the density of these vortices is sufficiently high then a v-av solid phase
will appear rather than a v-av liquid. Recently, a staggered vortex phase (a specific type of v-av phase) has been
observed in an optical square lattice13,14. This diverse set of physical systems underlies the ubiquity and importance
of the interplay between these orders.

Very recently, a quasi-one dimensional FFLO phase has been engineered in cold atomic gases4. This system allows
for the opportunity to examine recent theoretical predictions of the Larkin Ovchinnikov (LO) phase, in which the
mean field superconducting order parameter breaks translational symmetry in one direction (for example, the pairing
gap ∆(x) = ∆0 cos(qx)). In particular, recent theoretical work has focussed on the consequences of the U(1)× U(1)
symmetry that exists in the free energy due to translational and gauge invariance10,15–17. This symmetry implies
the existence of fractional vortices in addition to the usual vortices and dislocations that would be anticipated. The
fractional vortices have a superfluid phase winding of π, 1/2 the usual vortex phase winding10,15–18. These fractional
vortices are thus called 1/2 vortices. This 1/2 phase winding is accompanied by a 1/2 dislocation, which leads to
an additional sign change in the order parameter, so that the order parameter remains single valued when the 1/2
vortex is encircled. In two-dimensions (2D), the existence of these 1/2 vortices are closely related to the existence
of a spatially homogeneous superfluid condensate that corresponds to a bound state of four fermions: a charge 4e
superfluid10,15(in rotationally invariant superfluids, this phase always appears in two and three dimensions15).

The recent discovery of a LO phase in quasi-1D cold atoms systems provides an ideal opportunity to examine the
physics discussed above. It further indicates that that FFLO phases confined to 2D are also likely to be realized in
cold atoms. Mean field theories of the FFLO phase in 2D predict not only an LO phase, but a variety of other stable
FFLO phases19. In many of these phases, superfluidity is spatially modulated with an underlying hexagonal or square
lattice. These results lead to some more general questions about PDW phases: Are there other possible fractional
vortices? Are there other exotic phases? Here we examine two such 2D FFLO phases with underlying hexagonal
lattices that have been found in microscopic theories19. The theory we develop is relevant not only to FFLO phases,
but also to PDW and v-av lattice phases discussed above. Our most interesting results are: the existence of a spatially
uniform charge six superfluid phase, in which quasi-long range order appears only in an order parameter corresponding
to a bound state of six fermions (this results from a mean-field v-av lattice phase in which 1/3 vortices exist); and
the existence of spatially uniform charge two superfluid phases (this results from a mean-field phase in which there
are no fractional vortices). These phases, in addition to the charge four superfluid10,15 and non-superfluid density
wave10,15,17 found earlier in stripe-like PDW and FFLO phases indicate that the physics of such phases is much richer
than previously anticipated and offer the possibility to see never before seen states of matter.
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FIG. 1. Directions of Qi used in the text.

I. GINZBURG LANDAU WILSON THEORY

We consider two symmetry groups for the normal state which will serve to define the FFLO/PDW order. Both are
two dimensional (2D): the first is an isotropic normal state with cylindrical rotational symmetry and the second is the
2D space group P6m, the group of a triangular lattice. For simplicity, our development and emphasis will be on the
group P6m and we will state results for the case with cylindrical symmetry. For FFLO/PDW order appearing at a
wavevectorQ, the order parameter is defined by the irreducible representations of GQ (the set of rotation elements that
conserveQ) and the star of the wavevectorQ in P6m (set of wavevectors symmetrically equivalent to Q)20. We choose
the wavevectorQ2 = 2π

a
2√
3
(0, 1) (where a is FFLO/PDW lattice constant), which is invariant under the rotation group

GQ = {E,C2y, σz , σx} with C2y the 180o-rotation around the axis (1, 0), σz and σx the mirror operations perpendicular
to the 2D plane and the plane perpendicular to (1, 0), respectively. The irreducible representations of GQ are all one-
dimensional. The only situation in which the particular irreducible representation of GQ is relevant is when there is
a spatially uniform Q = 0 superfluid order also present (for example, corresponding to usual Cooper pairs)8. This
situation can be accounted for easily and, for this reason, we consider explicitly the identity representation in the
following (for which the order parameter is unchanged under the action of any element of GQ). To define the additional
order parameter components at the wavevectors in the star of Q we use the elements {E,C6, C

2
6 , C

3
6 , C

4
6 , C

5
6}, these

give the star of Q2, {Q2,−Q1,Q3,−Q2 Q1,−Q3}, as shown in Fig. 1. This then defines a superconducting order
parameter with six complex components which we define as ∆ = (∆Q1

,∆Q2
,∆Q3

,∆−Q1
,∆−Q2

,∆−Q3
). We take

Q1 = 2π
a

2√
3
(
√
3/2,−1/2), Q2 = 2π

a
2√
3
(0, 1), and Q3 = −Q1 − Q2 so that the superfluid order is unchanged by

the translations a1 = a(1, 0) and a2 = a(1/2,
√
3/2) (note that these are not translation vectors of the underlying

microscopic triangular lattice). We consider the case that these translations vectors are not commensurate with the
translation vectors of the underlying microscopic triangular lattice (as is the usual case with FFLO phases). With
these definitions, the symmetry properties of the order parameter are given as follows: under a microscopic translation

T , ∆Qj
→ eiQj

·T∆Qj
( ∆∗

Qj
→ e−iQ

j
·T∆∗

Qj
) and under a time-reversal operation ∆Qj

→ ∆∗
−Qj

. Moreover, under

point group symmetries we have that (∆Q1
,∆Q2

,∆Q3
,∆−Q1

,∆−Q2
,∆−Q3

) transforms to

C6 : (∆−Q3
,∆−Q1

,∆−Q2
,∆Q3

,∆Q1
,∆Q2

)
σz : (∆Q1

,∆Q2
,∆Q3

,∆−Q1
,∆−Q2

,∆−Q3
)

C2y : (∆Q3
,∆Q2

,∆Q1
,∆−Q3

,∆−Q2
,∆−Q1

)
σx : (∆Q3

,∆Q2
,∆Q1

,∆−Q3
,∆−Q2

,∆−Q1
)

(1)

The GLW free energy is constructed by requiring invariance under the group P6m, U(1) gauge symmetry (under
which ∆Qi

→ eiθ∆Qi
), and time-reversal symmetry. These symmetry operations are given above and the resulting
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Phase (∆Q1
,∆Q2

,∆Q3
,∆−Q1

,∆−Q2
,∆−Q3

) Free Energy β̃

ΨFF eiθ(1, 0, 0, 0, 0, 0) β1

ΨLO
eiθ√

2
(eiφ1 , 0, 0, e−iφ1 , 0, 0) β1 + β2/4

Ψ2Q
eiθ√

2
(eiφ1 , 0, 0, 0, e−iφ1 , 0) β1 + β4/4

Ψv−av
eiθ√

3
(eiφ1 , eiφ2 , e−i(φ1+φ2), 0, 0, 0) β1 + β3/3

Ψ3Q eiθ( e
iφ1 cos ǫ√

2
, eiφ2 cos ǫ√

2
, 0, 0, 0, e−i(φ1+φ2) sin ǫ) β1 − β2

4

4|β4|−|β3| (β3 < 0, 2|β4| < β3)

Ψ4Q
eiθ

2
(eiφ1 , ieiφ2 , 0, e−iφ1 , ie−iφ2 , 0) β1 + (β2 + β3 + β4 − β5)/8

Ψ△
eiθ√

6
(eiφ1 , eiφ2 , e−i(φ1+φ2), e−iφ1 , e−iφ2 , ei(φ1+φ2)) β1 + β2/12 + (β3 + β4 + β5)/6 (γ < 0)

Ψkag
eiθ√

6
(eiφ1 , eiπ/3eiφ2 , e−iπ/3e−i(φ1+φ2), e−iφ1 , eiπ/3e−iφ2 , e−iπ/3ei(φ1+φ2)) β1 + (β2 − β5)/12 + (β3 + β4)/6 (γ < 0)

Ψ6Q,1
eiθ√

2+a2+2b2+c2
(eiφ1 , eiφ2 , ae−i(φ1+φ2), be−iφ1 , be−iφ2 , cei(φ1+φ2)) no analytic solution found (β4 < 0, γ < 0)

Ψhc
eiθ√

6
(ieiφ1 , eiφ2 , e−i(φ1+φ2),−ie−iφ1 , e−iφ2 , ei(φ1+φ2)) β1 + β2/12 + (β3 + β4 + β5)/6 (γ > 0)

Ψhc,2
eiθ√

6
(ieiφ1 , eiπ/3eiφ2 , e−iπ/3e−i(φ1+φ2),−ie−iφ1 , eiπ/3e−iφ2 , e−iπ/3ei(φ1+φ2)) β1 + (β2 − β5)/12 + (β3 + β4)/6 (γ > 0)

Ψ6Q,2
eiθ√

2+2b2+a2+c2
(ieiφ1 , eiφ2 , ae−i(φ1+φ2),−ibe−iφ1 , be−iφ2 , cei(φ1+φ2)) no analytic solution found (β4 < 0, γ > 0)

TABLE I. Possible FFLO/PDW ground states and associated free energy. The free energy is given by −α2/4β̃. The conditions
in the brackets are necessary (but not sufficient) for the phase to exist. The phase factors θ, φ1, and φ2 are not determined by
the free energy and lead to Goldstone modes of the FFLO/PDW phases. The parameters ǫ, a, b, and c are determined by the
free energy and are temperature dependent.

free energy density is

f = −α∑

i |∆Qi
|2 + β1(

∑

i |∆Qi
|2)2 + β2

∑

i |∆Qi
|2|∆−Qi

|2
+β3(|∆Q1

|2|∆Q2
|2 + |∆Q1

|2|∆Q3
|2 + |∆Q2

|2|∆Q3
|2 + |∆−Q1

|2|∆−Q2
|2 + |∆−Q1

|2|∆−Q3
|2 + |∆−Q2

|2|∆−Q3
|2)

+β4(|∆Q1
|2|∆−Q2

|2 + |∆Q1
|2|∆−Q3

|2 + |∆Q2
|2|∆−Q3

|2 + |∆−Q1
|2|∆Q2

|2 + |∆−Q1
|2|∆Q3

|2 + |∆−Q2
|2|∆Q3

|2)
+β5[∆Q1

∆−Q1
(∆Q2

∆−Q2
)∗ +∆Q1

∆−Q1
(∆Q3

∆−Q3
)∗ +∆Q2

∆−Q2
(∆Q3

∆−Q3
)∗ + c.c] + κ1

∑

i |∇∆Qi
|2

+κ2[ν
2(|∇+∆Q1

|2 + |∇+∆−Q1
|2) + (|∇+∆Q2

|2 + |∇+∆−Q2
|2) + ν(|∇+∆Q3

|2 + |∇+∆−Q3
|2) + c.c.]

(2)
where c.c. means complex conjugate, ∇± = ∇x ± i∇y, and ν = ei2π/3. If the ground state solution has all six
components unequal to zero, then Eq. 2 is not sufficient to completely specify the order parameter (there remains an
unphysical U(1) symmetry in the solution). In this case the following free energy contribution is also required

γ[∆Q1∆Q2∆Q3(∆−Q1
∆−Q2

∆−Q3
)∗ +∆−Q1∆−Q2∆−Q3(∆Q1

∆Q2
∆Q3

)∗]. (3)

Unlike the case for tetragonal symmetry8,17, we are not able to analytically find the ground states of Eq. 2. However,
through a combination of analytical and numerical analysis, we find that the Eq. 2 allows at least twelve possible
global minima depending on the parameters βi. These are listed in Table I (note that these ground states also exist
for a material that is cylindrically invariant). Of particular relevance are the states ΨLO, Ψ△ and Ψv−av since these
have all been found as stable ground states of cylindrically symmetric microscopic weak-coupling theories of the FFLO
phase19. The state ΨLO has been previously studied and was discussed in the introduction. Consequently, in the
following, we concentrate on the states Ψ△ and Ψv−av. The state described by Ψ△ is a superfluid triangular lattice
(this state is closely related to Ψhc, which is a superfluid honeycomb lattice without any vortices). The state Ψv−av

is a v-av triangular lattice. These two states are depicted in Fig. 2. Prior to examining these two ground states in
detail, we note that some of the other phases are also of interest. Perhaps the most interesting is Ψkag. The local
maxima of the superfluid density of Ψkag form a Kagomé lattice. Within the the hexagons of this Kagomé lattice
there are double vortices and there are single anti-vortices within the triangles of this Kagomé lattice. The analysis
that follows can be applied to any of the ground states listed in Table I.

II. SECONDARY ORDER PARAMETERS FOR THE PHASES Ψv−av AND Ψ△

In addition to the FFLO/PDW order parameters, there are secondary order parameters that play an important
role in thermal melting and in distinguishing the different FFLO/PDW phases. In the mean field theory, these
order parameters appear at the mean field phase transition in addition to the FFLO/PDW order. These secondary
order parameters include density wave order, orbital angular momentum and spin density wave order (characterizing
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FIG. 2. Hexagonal FFLO/PDW states considered in detail in this paper. The dots depict maxima in the magnitude of the
superfluid density and the + (−) symbols depict vortices of positive (negative) phase winding. Both states are stable 2D FFLO
states in the weak-coupling theories with cylindrical symmetry.

the vortex-antivortex lattice), and spatially uniform superfluid order. When thermal melting is considered, these
secondary order parameters may become the primary order parameter and therefore play an important role in the
theory. In the following, we characterize these secondary order parameters for the two states Ψ△ and Ψv−av in turn.
The state Ψ△ is characterized by a spatially oscillating superfluid density with an underlying triangular lattice and

a co-existing spatially uniform s-wave charge two superfluid order. Specifically, the secondary orders are: a spatially
uniform conventional superfluid order ψs ∝ ∆Q

1
∆Q2

(∆−Q3
)∗+∆Q1

∆Q3
(∆−Q2

)∗+∆Q2
∆Q3

(∆−Q1
)∗ and the density

wave order ρQ1
∝ ∆−Q3

(∆Q2
)∗, ρQ2

∝ ∆−Q1
(∆Q3

)∗, and ρQ3
∝ ∆−Q2

(∆Q1
)∗. The density wave order has the same

lattice as the FFLO/PDW order. The appearance of a spatially uniform charge two superfluid is somewhat surprising
for a FFLO/PDW phase. It is a consequence of the underlying hexagonal symmetry, it does not occur for the LO phase
or for FFLO/PDW phases with an underlying square lattice. The existence of this order stems from the following
coupling term in GLW free energy

ǫ{ψs[∆Q1
(∆−Q2

∆−Q3
)∗ +∆Q2

(∆−Q1
∆−Q3

)∗ +∆Q3
(∆−Q1

∆−Q2
)∗] + c.c}, (4)

since ψs appears linearly, it must become non-zero at the mean-field FFLO/PDW transition. We note that, for the
same reasons as Ψ△, the phases have Ψhc,2 and Ψkag have spatially uniform charge 2e px + ipy and dx2−y2 + idxy
order, respectively, in addition to the FFLO/PDW order.
The state Ψv−av describes a triangular v-av lattice. For Ψv−av the secondary order parameters are: a charge six

superfluid order ψ6e ∝ ∆Q1
∆Q2

∆Q3
and the orbital angular momentum (lz) and density wave (ρ) orders ilz,K1

∝
ρK1

∝ ∆Q2
(∆Q3

)∗, ilz,K2
∝ ρK2

∝ ∆Q3
(∆Q1

)∗, and ilz,K3
∝ ρK3

∝ ∆Q2
(∆Q1

)∗ whereK1 = Q3−Q2, K2 = Q1−Q3,

and K3 = Q2−Q1. The density wave order characterizes a hexagonal lattice that is rotated π/2 and has a
√
3 shorter

lattice vector than the FFLO/PDW lattice. The orbital angular momentum lz describes the v-av lattice that exists
in this phase (the state Ψ△ has no vortices, so that lz = 0).

III. ELASTIC THEORY

The undetermined phase factors θ, φ1, and φ2 in Ψ△ and Ψv−av reveal an underlying U(1)×U(1)×U(1) symmetry
of the GLW free energy and correspond to elastic modes of these phases. Physically, this symmetry originates from
the two phonon degrees of freedom u = (ux, uy) of the 2D FFLO/PDW lattice and the superfluid phase degree of
freedom, θ. The phases φ1 and φ2 are then φ1 = Q1 · u and φ2 = Q2 · u. Under uniform phase shifts of θ and u the
order parameters transform as follows:

∆Q →eiθ+iQ·u∆Q

ψs →eiθψs

ψ6e →ei3θψ6e

ρQ →eiQ·uρQ

lz,K →eiK·ulz,K. (5)

At low temperatures, we can ignore fluctuations in the magnitude of the ∆Qi and the effective Hamiltonian is governed
by fluctuations in θ and u. To lowest order, the relevant elastic Hamiltonians are given in Table II. We have used

the usual definitions usij = 1
2 (

∂ui

∂xj
+

∂uj

∂xi
) and uaij = 1

2 (
∂ui

∂xj
− ∂uj

∂xi
). Note that if cylindrical symmetry is assumed,

then γ = 0 in the elastic Hamiltonians. However, if there is an underlying microscopic hexagonal lattice, then γ 6= 0.
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Phase Elastic Hamiltonian Vortex Charge Dislocation Charge

Ψ△
1
2
ρs(∇θ)2 + λ

2
u2
ii + µ(us

ij)
2 + γ(ua

ij)
2 1

2π

∮

dθ = n
∮

du = l1(a, 0)

+l2(
a
2
,
√

3a
2

)

Ψv−av
1
2
ρs(∇θ)2 + λ

2
u2
ii + µ(us

ij)
2 + γ(ua

ij)
2 1

2π

∮

dθ = 1
3
(n1 + n2 + n3)

∮

dux = a
2
(n1 − n3)

+ǫ[ ∂θ
∂x

2us
xy + ∂θ

∂y
(uxx − uyy)]

∮

duy = a

2
√

3
(2n2 − n1 − n3)

TABLE II. Elastic Hamiltonians and the vortex and dislocation charges of the topological excitations of the two FFLO/PDW
phases (ni and li are integers).

Note that the expressions in Table II are the most general expressions allowed by symmetry. For the GLW theory of
Eq. 2, the elastic coefficients simplify. For example, for the phase Ψv−av, the elastic coefficients in the GLW limit are:
ρs = 2|Ψ0|2κ1, λ = −(2πa )2|Ψ0|2κ2/2, µ = (2πa )2|Ψ0|2κ1/2, γ = (2πa )2|Ψ0|2(κ1 + κ2)/2, and ǫ =

2π
a |Ψ0|2κ2 where Ψ0

is the magnitude of the normalized order parameter. In general, higher order terms in the GLW theory will lead to
new coefficients, for example the term

ω[(∆Q1∆Q2)
∗(∇∆Q1 · ∇∆Q2) + (∆Q1∆Q3)

∗(∇∆Q1 · ∇∆Q3) + (∆Q1∆Q3)
∗(∇∆Q1 · ∇∆Q3) + c.c.] (6)

will increase ρs and decrease µ and γ (for positive ω), leading to different energy scales for superfluid phase fluctuations
and for phonons. Since terms such as Eq. 6 are not necessarily small near any melting transition in 2D, we have
included all terms allowed by symmetry. We note that the related elastic theories for LO phases have been worked
out microscopically in Refs. 18 and 21.
The elastic Hamiltonians in Table II imply power law spatial correlations in 2D for the order parameters. While

it is possible to carry out a complete analysis of the melting transition for Ψ△, this is not the case for Ψv−av. We
therefore consider a simpler and more physically transparent approach that allows both Ψ△ and Ψv−av to be treated
on an equal footing. In particular, we ignore terms that give rise to spatial anisotropy in the correlation functions.
This approach is akin to an early treatment of 2D melting done by Nelson22. This yields the correct phase melting
diagram in 2D but does not provide accurate critical exponents23,24. The simplified elastic Hamiltonian is

H =
ρs
2
(∇θ)2 + µ

2
(
2π

a
)2[(∇ux)2 + (∇uy)2]. (7)

The spatial dependence of the correlation functions is then given as

〈∆Q(r)∆−Q
∗(0)〉 ∝ r−(ηs+ηd)

〈ψs(r)ψs(0)〉 ∝ r−ηs

〈ρQ(r)ρ−Q(0)〉 ∝ r−ηd

〈ρK(r)ρ−K(0)〉 ∝ r−3ηd

〈lz,K(r)lz,−K(0)〉 ∝ r−3ηd

〈ψ6e(r)ψ
∗
6e(0)〉 ∝ r−9ηs (8)

where ηs = T/(2πρs) and ηd = T/(2πµ).

IV. TOPOLOGICAL EXCITATIONS

The low energy topological excitations are important in the melting of the FFLO/PDW phases. These are found
by requiring single valuedness of the order parameter components ∆Q. In particular, defining ∆Qi

= ∆0e
iθi with

θi = θ +Qi · u, then along a contour surrounding a point defect in 2D,
∮

dθi =

∮

dθ +

∮

Qi · du = ni2π (9)

with integer ni. Implementing this condition for all components of the FFLO order parameter leads to the defect
classification of Table II. An important feature is the existence of defects that contain both fractional vortex charge
and fractional dislocation charge. In the case of the stripe-like PDW and FFLO phases, the predicted 1/2 vortices
play a central role in determining the phase diagram10,15,17. Fractional vortices exist for Ψv−av but not for Ψ△.
The ground state Ψv−av supports: conventional vortices (n1 = n2 = n3 in Table II); conventional dislocations

l1(a, 0)+ l2(
a
2 ,

√
3a
2 ) (when n1+n2+n3 = 0 in Table II); and 1/3 vortices which combine a phase winding of 2π/3 and
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a fractional dislocation (with a charge that is 1/
√
3 of the charge of the smallest conventional dislocation). We note

that fractional vortices related to the 1/3 vortices found here have been discussed in the context of antiferromagnetic
model on the XY lattice25 and the fully frustrated XY model on the dice lattice26.
The ground state Ψ△ allows only conventional vortices and conventional dislocations. This latter result is somewhat

surprising given the prevalence of fractional vortices in other FFLO/PDW ground states and is a direct consequence
of the co-existence of the spatially uniform charge two s-wave superfluid with the FFLO/PDW order.

V. DEFECT DRIVEN FFLO/PDW MELTING

The elastic Hamiltonian of Eq. 7 implies that the interaction between the defects is given by:

Htop = 2π
∑

i6=j

{

Ksninj +
Kd

a2
bi · bj

}

ln(
rij
ac

) (10)

where ni is the vortex charge of the defect, bi is the dislocation charge, ac is a hardcore cutoff, rij is the dis-
tance between the defects i and j, Ks = ρs/T , and Kd = µ/T . Core energies of the defects give rise to bare
fugacities yi = exp{−C(Ksn

2
i + Kdb

2
i /a

2)} where C is a constant of order one. We consider the small fugac-
ity limit. In describing the critical properties, only the lowest energy defects are required. For the ground state
Ψv−av, we include single vortices

∮

dθ = ±2π (with fugacity yv), minimal normal dislocations
∮

du = a(±1, 0),
∮

du = ±a(1/2,
√
3/2),

∮

du = ±a(−1/2,
√
3/2) (each with with fugacity yd), and one-third vortices

∮

dθ = ±2π/3

and
∮

du = ±a 1√
3
(0, 1),±a 1√

3
(
√
3
2 ,

−1
2 ),±a 1√

3
(
√
3
2 ,

1
2 ) (each with fugacity y1/3). While for Ψ△ we include single

vortices and minimal normal dislocations.
The approach of Kosterlitz and Thouless as generalized to vector Coulomb gases22–24,27,28 is used to determine the

phase diagram. The hard core cutoff ac of the defects is increased to ãc = ace
dl. Under this infinitesimal coarse

graining, pairs of defects separated by a distance ac either annihilate if they have opposite charges; or they combine to
form a new defect described by the sum of the charges. This procedure leads to renormalization group (RG) equations
for the scale dependent fugacities yi and interaction parameters Ks and Kd. For Ψv−av, we find

dK−1
s

dl
= 4π3(y2v +

1
3y

2
1/3)

dK−1
d

dl
= 2π3(3y2d + y21/3)

dyv
dl

= (2− πKs)yv

dyd
dl

= (2− πKd)yd + 2πy2d + 2πy21/3

dy1/3

dl
=y1/3{[2− π(Ks

9 + Kd

3 )] + 4πyd}. (11)

To gain insight into Eq. 11, it is useful consider initially the first RG equation (for Ks). This RG equation arises due
to screening of single vortices. These vortices can be screened by other single vortices and by the one-third vortices.
The interaction between single vortices is given by Ks, while that between a single vortex and a one-third vortex is
given by Ks/3. This leads to the first RG equation (for Ks): the 1/3 in the new term y21/3/3 comes from a factor

of (Kv/3)
2 (due to the interaction between a vortex and a one-third vortex) and a factor of three stemming from

the three different possible ways to screen a single vortex with one-third vortices. The second RG equation follows
from a similar consideration for dislocations (these can be screened by other dislocations and by one-third vortices).
The equations determining the fugacities follow from the usual considerations27,29 together with the possibility of
combining defects to create a new defect22–24,28. For example, dislocations can be created by pairing either two other
dislocations or by pairing two one-third vortices. These two processes lead to the terms 2πy2d + 2πy21/3 in the fourth

RG equation.
For comparison, we write the RG equations for Ψ△ (these are simply the RG equations of superfluidity27 and 2D

melting in the isotropic limit22),

dK−1
s

dl
= 4π3y2v

dK−1
d

dl
= 6π3y2d
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FIG. 3. Phase diagrams for Ψ△ and Ψv−av. Phase boundaries are given by solid lines. The shaded triangles are discussed in the
text. The new phases that arise from melting the FFLO/PDW phases are the density wave, superfluid, orbital antiferromagnet,
and homogeneous charge six superfluid (Ψ6e) phases. The density wave phase has no superfluid order and breaks translational
symmetry through the formation of a hexagonal lattice. The superfluid phase is a homogenous conventional paired superfluid.
The orbital antiferromagnet phase has no superfluid order and hexagonal orbital current antiferromagnetic order. The Ψ6e

phase is a spatially homogenous superfluid phase of bound states of six fermions

dyv
dl

= (2− πKs)yv

dyd
dl

=(2 − πKd)yd + 2πy2d. (12)

Despite starting with the same elastic Hamiltonian, the RG equations and the resultant phase diagrams for the two
different ground states (shown in Fig. 3) differ substantially. This is because the state Ψv−av has exotic one-third
vortices, while the state Ψ△ does not.
For the ground state Ψ△, the theory is that of uncoupled dislocations and vortices. Vortices proliferate for πρs/T < 2

and dislocations proliferate for πµ/T < 2. As a consequence, the melting of the FFLO/PDW phase occurs generally
through two separate phase transitions. As temperature is increased, the first transition is either to a conventional
superfluid or to a density wave state and the second is to the disordered phase. An examination of the correlation
functions in Eq. 8 reveal that in the FFLO/PDW phase either the conventional superfluid order or the density
wave order (and not the FFLO/PDW order) have the longest range correlations, masking the original FFLO/PDW
order. Indeed, the melting of the FFLO/PDW to a density wave state and then to a disordered state represents the
same sequence of transitions expected for a conventional supersolid30,31. These arguments indicate that Ψ△ strongly
resembles a conventional supersolid state.
Let us come back to the state Ψv−av. Its phase diagram can be understood qualitatively by considering the terms

of Eq. 11 that are linear in the fugacities. In this limit, vortices proliferate for πρs/T < 2 (superfluid order is lost),
dislocations proliferate for πµ/T < 2 (density wave order is lost), and 1/3 vortices proliferate when π(ρs/9+µ/3)/T < 2
(all order is lost). Consequently, in addition to the disordered phase and the fully ordered FFLO/PDW phase, there
exist two new phases. The first is an orbital antiferromagnet phase in which there is no superfluid order, however,
the density wave order and the orbital order still exhibit power law correlations. The second phase is a charge
six superfluid (Ψ6e) that is spatially homogeneous. In this phase there is no density wave or orbital order. The
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qualitative phase diagram for Ψv−av is shown in Fig. 3 (an exact phase diagram requires going beyond the small
fugacity limit). The solid lines are the anticipated phases boundaries. These follow from an argument given in Ref. 32
for the phase diagram of 2D spinor condensates. In the shaded triangular regions of Fig. 3, the phases ψ6e and the
orbital antiferromagnetic phase cannot be stable (a theory linear in fugacities would lead to the opposite conclusion).
In particular, even though π(ρs/9+µ/3)/T < 2 for the unrenormalized stiffnesses, this is not true for the renormalized
stiffnesses. Consequently, 1/3 vortices will proliferate and all quasi-long range order will be lost.
We note that, in principle, there can exist other phases that have not been explicitly considered here. For example,

for rotationally invariant systems, the passage of the density wave phase into the disordered phase can have an
intervening hexatic phase23. Similarly, a recent analysis for the LO phase for rotationally invariant systems, leads to
an intervening nematic phase33. The consideration of such phases requires the inclusion of disclinations and related
defects which have not been included in this work.

VI. CONCLUSIONS

We have presented an analysis of thermal melting on two FFLO/PDW ground states with hexagonal symmetry. For
a FFLO/PDW vortex-antivortex lattice phase, we find that thermal melting can lead to either a charge six superfluid,
an orbital antiferromagnetic, or directly to a disordered phase. While for a FFLO/PDW phase with only superfluid
density oscillations, thermal melting necessarily proceeds in two transitions: the first to either a density wave phase or
a conventional superfluid, and the second transition to a disordered phase. The latter FFLO/PDW phase is difficult
to distinguish from a conventional supersolid phase.
We acknowledge Manfred Sigrist for useful discussions. This work is supported by NSF grant DMR-0906655 and

by Grants-in-Aid for Scientific Research (No. 19052003), MEXT of Japan. DFA and HT acknowledge the Hospitality
of Pauli Center of the ETH-Zurich.
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