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Analogy of RKKY oscillations to the heat exchange in cold atoms
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An oscillatory term is found in both the energy expectation and dynamics of a wave-packet in a
time-varying harmonic trap and infinite potential well. They are proved to oscillate in coherence
with the time lapse within each period depending on both the cutoff in transition energies and the
specific route via which the potential is being varied. This oscillatory term is general to arbitrary
potential forms since it derives from the interference between crossed transition trajectories. Close
analogy is made to the Ruderman-Kittel-Kasuya-Yosida interaction for giant-magnetoresistance
trilayers, where many-body quantum interference among scattering states renders the oscillation
as a function of spacer width. This connection reveals the generality of quantum friction due to
parasitic oscillations.

PACS numbers: 03.65.-w, 07.20.Pe, 37.90.+j, 75.30.Et

I. INTRODUCTION

The adiabatic and sudden processes are two opposite
limits in the time-dependent quantum mechanics. The
adiabatic tuning is involved in experiments, such as the
advanced cooling technique[1], quantum computing[2, 3],
and the state broadening in optical lattices[4]. The com-
bination of adiabatic and sudden processes is also used
to minimize the transition time between different ther-
mal equilibrium states[5]. Although analytic forms con-
veniently exist for these two limits, cares need to be taken
when identifying them to real systems[6]. How to de-
scribe the physics for a time-varying potential when nei-
ther limit is applicable remains a challenging task. In-
teresting phenomena have been proposed to exist in this
regime, for instance, the parasitic oscillations that give
rise to the quantum friction when the Hamiltonians at
different time do not commute, as is the case when the
potential profile changes at finite rates[7, 8].

Unlike the friction that lead to dissipations, the quan-
tum frictional process is reversible and energies can
be stored in or taken out of the oscillations[5]. Non-
adiabatic processes allow the transition between differ-
ent instantaneous states, which leads to the parasitic os-
cillations. Ostensibly it seems difficult to deduce any
general property in these systems without the knowledge
of the specific paths of transition. However, since the
parasitic oscillations are a collective behavior that re-
sults from the contribution of all trajectories, this task
has been shown to be possible. One of the most famous
examples in many-body systems is the carrier-mediated
interaction between magnetic impurities or thin films,
namely, the Ruderman-Kittel-Kasuya-Yosida (RKKY)
coupling[9]. This coupling is dominated by the quan-
tum interference between scattering paths[10] of the me-
diating electrons and the resulting strength oscillates as
a function of separating distance with a period of half
Fermi wavelength. Similar to the RKKY coupling, the
dynamic parasitic oscillations mediate the coupling be-
tween boundaries. While the energy input from the mov-
ing boundaries plays the role of coupling strength, the
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FIG. 1: (color online) Interference diagrams for (a) the RKKY
oscillation and (b) oscillatory term in the energy expectation
in a contracting potential well. The curve lines denote scatter-
ing paths with different rounds between the interfaces. The
solid lines represent energy levels and the dotted lines are
transition paths.

oscillation is now in time instead of space. If we take
as an example the giant magnetoresistance (GMR)[11]
system in which the RKKY mechanism has successfully
applied, the close resemblance of interference diagrams
for RKKY and the time-varying potential trap is exem-
plified in Fig.1.

In Section II we first examine the harmonic trap be-
cause the time-dependence of its basis lies solely in the
frequency ω(t). The expectation values of energy and
position-momentum correlation that represent the para-
sitic oscillations are calculated analytically for an arbi-
trary wave-packet. We extend our study in Section III to
an infinite well to demonstrate that these oscillations and
the time lapse within each period they share is calculable
are general. The interesting analogy between RKKY os-
cillation and the energy input from the time-varying trap
is arranged in the final Section IV, together with some
discussions and conclusions. By use of formulae in Sec-
tion II, we calculate the energy expectation of harmonic
oscillators varying with a constant adiabatic parameter
in Appendix A, and reproduced routes that have been
reported[12] to be frictionless. Appendix B provides cal-
culations to explain why the oscillation ceases to exist in
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the adiabatic and sudden limits.

II. HARMONIC TRAP

A. Energy and Position-Momentum Correlation

We consider an one-dimensional time-dependent har-
monic trap, Ĥ(t) = p̂2/2m + mω2(t)x̂2/2, with an
initial angular frequency ω(0) = ω0. An orthonor-
mal basis can be constructed out of the time-dependent
eigenfunctions[13]

Ψn(t, x) =
(mω0

π~

)1/4 e−i(n+1/2)
∫

t

0
dt′(ω0/b

2)

(2nb · n!)1/2

× ei(m/2~)(ḃ/b+iω0/b
2)x2

Hn

[(mω0

~

)1/2x

b

]

, (1)

where b(2~/mω0)
1/2 = bL0 is the time-dependent length

scale with the scaling function, b(t), satisfying

b̈+ ω2(t)b = ω2
0/b

3, (2)

and the initial conditions b(0) = 1.

To calculate the energy expectation, we first use Ĥ(t)
to operate on the basis function

Ĥ(t)|Ψn(t)〉 = e−i(n+1/2)
∫

t

0
dt′(ω0/b

2)ei(m/2~)ḃx̂2/b

×
[

(n+
1

2
)
~ω0

b2
+
m

2
(ḃ2 − bb̈)(

x̂

b
)2 +

ḃ

2b
{x̂, p̂}

]

|φn(b)〉,
(3)

where |φn(b)〉 is the normalized instantaneous eigen-
function for (p̂2/2m+mω2

0x̂
2/2b4) with eigenvalue (n+

1/2)(~ω0/b
2).

Given any wave-packet ψ(0, x) = ψ0(x), its evolution
follows ψ(t, x) =

∑

n cnΨn(t, x) with the projection

cn = 〈Ψn(t = 0)|ψ0〉 = 〈φn(b = 1)|e−i(m/2~)ḃ(0)x2

ψ0〉.
(4)

By use of Eq.(3), the energy expectation can be obtained
as

〈Ĥ(t)〉 =
∑

n,l

e−i(n−l)
∫

t

0
dt′(ω0/b

2)

〈e−imḃ(0)x̂2/2~ψ0|φl(1)〉〈φl(b)|
[

(n+
1

2
)
~ω0

b2
+
m

2
(ḃ2 − bb̈)(

x̂

b
)2 +

ḃ

2b
{x̂, p̂}

]

|φn(b)〉〈φn(1)|e−imḃ(0)x̂2/2~ψ0〉. (5)

Since our choice of time-dependent basis is not the eigen-
functions of energy operator, the energy expectation
in Eq.(5) contains both diagonal and non-diagonal el-
ements. The non-diagonal elements are non-zero only
when n and l share the same parity; namely, n− l is an
even number.

The two summations in Eq.(5) can be removed by
appealing to the identity operator after we change the
length scale in the second inner product from b to 1 and
reexpress the (n− l) in the exponent by the Hamiltonian
operator. Equation (5) now becomes

〈Ĥ(t)〉 =〈ψ0|eimḃ(0)x̂2/2~ei
Ĥ0
~

∫
t

0
dt′/b2

[(Ĥ0

b2
− m

2
bb̈x̂2

)

+
m

2
ḃ2x̂2 +

ḃ

2b
{x̂, p̂}

]

e−i
Ĥ0
~

∫
t

0
dt′/b2e−imḃ(0)x̂2/2~|ψ0〉, (6)

with Ĥ0 = p̂2/2m +mω2
0x̂

2/2. Being independent of ḃ,
the first term in the square bracket can be identified as
the energy in the adiabatic limit:

Ĥ0

b2
− m

2
bb̈x̂2 =

−1

2m

( ∂

b∂x

)2

+
m

2
ω2(t)b2x̂2, (7)

where Eq.(2) has been used. In the mean time, the

mḃ2x̂2/2 term describes the extra kinetic energy due to
the pull or push by the moving potential. The third term
can be easily shown to be proportional to [Ĥ(0), Ĥ(t)],
which gives rise to the quantum friction [7, 8] when
the Hamiltonians at different times do not commute.
The reason is that the positive/negative sign of 〈{x̂, p̂}〉
reflects the expansion/contraction motion of the wave-

packet, while ḃ/b keeps track of similar motions of the
trap. If the wave-packet moves along with the trap, it
receives a positive work of ḃ〈{x̂, p̂}〉/2b. On the other
hand, against intuitions, the packet can sometimes resist
and behave oppositely, which causes the work to turn
negative and diminishes its energy. If the initial wave-
function consists of only one ψ0 Eq.(1) as, Eq.(6) can be
solved straightforwardly as

〈Ĥ(t)〉n =

(

2n+ 1
)

~

4ω0

(ω2
0

b2
+ ω2b2 + ḃ2

)

. (8)

The friction term expectedly becomes zero because the
eigenfunction always moves coherently with the trap.
For a general ψ0, Eq.(6) can be simplified by using (1)

ladder operators in Ĥ0, a0 and a+0 , and (2) the commu-
tation relations

a0e
γa+

0
a0 = eγeγa

+

0
a0a0,

a0e
η(a+

0
+a0)

2

= eη(a
+

0
+a0)

2[

a0 + 2η(a+0 + a0)
)

].

By use of both relations, Eq.(6) can be simplified to

〈Ĥ(t)〉 =~

(ω0

b2
+

1

2ω0

(

ḃ2 − bb̈
)

)[1

2
+ 〈ψ0|Λ+Λ|ψ0〉

]

+ ~Re
[( 1

2ω0

(

ḃ2 − bb̈
)

− i
ḃ

b

)

× e−2i
∫

t

0
dt′ω0/b

2〈ψ0|ΛΛ|ψ0〉
]

(9)
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where the new ladder operators, Λ and Λ+, are obtained
from the old set via the Bogoliubov transformation,

Λ ≡ a0 − i
ḃ(0)

2ω0
(a+0 + a0). (10)

Another interesting property pertinent to the dynamics
is the expectation value for the position-momentum cor-
relation operator Ĉ = {x̂, p̂},

〈Ĉ〉 =~
bḃ

ω0

[1

2
+ 〈ψ0|Λ+Λ|ψ0〉

]

+ ~Re
[

( bḃ

ω0
− i

)

e−2i
∫

t

0
dt′ω0/b

2〈ψ0|ΛΛ|ψ0〉
]

. (11)

The derivations so far depend on our selection of a time-
varying trap that avoids generating a complex phase fac-

tor, ω0 =

√

ω2(0) + b̈(0). One example is the trap with

a constant adiabatic parameter µ ≡ ω̇/ω2. The energy
expectation was found to switch from being sinusoidal to
hyperbolic as |µ| ≥ 2 by Rezek et al.[12]. Furthermore,
they discovered the oscillation to be intimately linked to
the existence of frictionless routes when |µ| < 2. Detailed
discussion are arranged in Appendix A where identical
results are rederived by our approach, i.e., Eq.(9). From
now on, we shall confine ourselves to initial conditions
b̈(0) = 0 that guarantees ω0 = ω(0) to be real.
It may seem surprising for a system as simple as the

harmonic potential within the single-particle picture that
the energy expectation in Eq.(9) should contain an oscil-
latory term which, within one period, requires

2

∫ T

0

dt′ω0/b
2(t) = 2π. (12)

where T is in general time-dependent and thus is not a
proper period. To understand its origin, let us go back
and examine the mathematic structure in Eq.(5). We
have already shown that only the even-(n− l) terms need
to be considered. Therefore, the T shared by Eq.(9) and
Eq.(11) is the least common multiple of these different
phases as defined by Eq.(17).

B. Coupling between quantum friction and

quantum breathing

The parasitic oscillations give rise to the breathing
effect[14] which term was originally proposed to describe
the large-amplitude fluctuations of wave-packet caused
by the excess energy[15] when a harmonic trap was ex-
panded suddenly. In this case, the energy expectation
of the final state is a constant. Only the position-
momentum correlation 〈C〉 contains the oscillatory term
with frequency, 1/T , determined solely by the frequency
ω characterizing the final trap. In the following, we shall
allow the trap to contact at a general rate. For a medium
rate (bḃ/ω0) ∼ 1, the quantum friction will enter and ren-
der the quantum breathing with the oscillation period

sensitively affected by the specific route via which the
final stage is reached.
We start with a linearly contracting harmonic trap,

where ḃ is constant, to pave ways for our later extension
to other potential profiles in Section III. Set the initial
wavefunction to lie in the ground state |φ0(b = 1)〉 and
insert it to Eq.(9) give the energy expectation at any later
time

E(t) =~

(ω0

b2
+

ḃ2

2ω0

)[1

2
+
( ḃ

2ω0

)2
]

− ~ḃ2

2ω0

[

( ḃ

2ω0

)2
+

1

b

]

cos
(

2
ω0

b
t
)

+
~ḃ2

2ω0

ḃ

2ω0

(1

b
− 1

)

sin
(

2
ω0

b
t
)

. (13)

For a mild contraction, (bḃ/ω0) ∼ 1, the oscillation terms
are as important as the first term in Eq.(13). Besides
demonstrating the oscillatory feature, Fig.2 also shows a
higher energy expectation than the adiabatic result which
is an artifact of our choice to start from the ground state.
Had we chosen a mixed state such as the coherent state
exp(ip0x̂/~) exp(−ix0p̂/~) |φ0(1)〉, where x0/p0 denotes
the initial position/momentum of the state, their relative
size could be reversed. For the coherent state that moves
toward the contracting boundary, the energy modulation
is smaller than the adiabatic result because of the reduc-
tion from the quantum friction.
Another useful signature of the wave-packet dynamics

is the position-momentum correlation 〈Ĉ〉 in Eq.(11),

C(t) =~
ḃb

ω0

[1

2
+
( ḃ

2ω0

)2
]

− ~
bḃ

ω0

[

( ḃ

2ω0

)2
+

1

2b

]

cos
(

2
ω0

b
t
)

+ ~b
( ḃ

2ω0

)2
(1

b
− 2

)

sin
(

2
ω0

b
t
)

, (14)

where C(0) = 0 and a positive/negative C(t) signifies
an expanding/contracting wave-packet. The numerical
result in Fig.3 reveals an unexpected motion; namely,
the wave-packet can sometimes expand against the con-
tracting trap. In Fig.4, the variance var(x)= 〈x2〉 − 〈x〉2
is calculated and plotted in the solid line. Consistent
with the conclusion of Fig.3, the uncertainty in position
also increases in the gray regions, in clear contrast to the
monotonous adiabatic result in the dashed line.
Since our choice of initial wavefunction φ0(b = 1) has

nonzero projections on more than one direction of the or-
thonormal basis Ψn(t, x) in Eq.(1), the quantum breath-
ing or the parasitic oscillation of its density profile is ex-
pected. Similar to its classical counterpart, the quantum-
friction term extracts work from and thus slows down

the wave-packet when its motion is against that of the
potential profile. This resistance will modulate the en-
ergy expectation as well as its dynamics and result in
oscillations coherently but not necessarily synchronized.
This is demonstrated by the contrast of the solid and
dashed lines in Fig.3, which monitor the dynamics and
the amount of energy input, respectively.



4

0.4 0.6 0.8 1.0

b

2

6

10
E

 (
t)

FIG. 2: (color online) The energy expectation in Eq.(13)
is plotted as a function of b for a linear contraction with
ḃ = −ω0/4 and b̈ = 0 (thick solid line), and the adiabatic
process with E(b) = E0/b

2(thin solid line). In compari-

son, the coherent state with {x0, p0}={
√

~/mω0,−
√
~mω0}

that moves away from the contracting boundary is plotted
in dashed line and the state with the opposite motion for
{x0, p0}={

√

~/mω0,
√
~mω0} is plotted in dotted line. From

now on, the energies in all figures are expressed in unit of the
initial energy.
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FIG. 3: (color online) The solid line denotes the expectation
value of {x̂, p̂} in Eq.(14) with the same parameters as its
counterpart in Fig.2. For comparison, the difference in en-
ergy expectation between the two lines in Fig.2 is plotted in
the dashed line. The gray areas highlight the regions when
the wave-packet expands against the contraction of the trap.
Although the energy input remains positive when this unex-
pected behavior occurs, its efficiency is greatly diminished due
to the quantum friction.

However, the harmonic oscillator is special because of
its unique internal frequency and the classical analogies
it enjoys, such as the dynamics of the coherent state. In
order to demonstrate (1) the authenticity of this oscil-
latory feature, (2) the dynamics and energy are coupled
together with a common time lapse that is determinable,
and (3) our approach of constructing a basis out of the
original eigenfunctions is general to all potential traps,
we shall examine the infinite potential well in the next
section.
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FIG. 4: (color online) The variance, var(x)= 〈x2〉 − 〈x〉2, is
plotted as a function of b for ḃ = −ω0/4 (solid line), −ω0/2000
(dashed line and adiabatic limit), and −25ω0 (dotted line and

sudden limit). The length scale L0 is defined as (2~/mω0)
1/2.

The gray area are the same regions of interest in Fig.3.

III. INFINITE WELL

For any one-dimensional linearly-varying trap, the
hamiltonian can be described by Ĥ(x/(bL0)) with the di-

mensionless factor b(t) obeying ḃ =constant and b(0) = 1.
One convenient orthonormal basis can be chosen as

Φn(t, x) = b−
1
2 e−i

∫
t

0
dt′En/~eimḃx2/2b~φn

( x

bL0

)

. (15)

where n are positive integers and φn(
x

b(t)L0
) and En(t) are

the instantaneous eigenstates and eigenenergies. The ex-

ponents, (−
∫ t

0
dt′En(t

′)/~) and (mḃx2/2b~), provide the
dynamic phases. By using this basis, the energy expec-
tation for any initial state ψ0 can be found to share the
same structure as Eq.(6) with b̈ = 0. Therefore, the ar-
guments following Eq.(6) can also be applied here, which
allow us to conclude that the coupling between quantum
friction and quantum breathing is general.
For illustration, let us pick an initial wave-packet in

Boltzmann distribution of the instantaneous eigenstates
at t = 0:

ψ0(x) = N−1/2
∑

n=1

e−βEn(0)φn(x/L0), (16)

where N =
∑

exp(−βEn(0)). Both the oscillation fea-
ture and the coupling between dynamic and energy are
displayed clearly in the numerical result in Fig.5 for the
operating temperature ∼ 1K accessible to cold-atom ex-
periments. Naively, one may not expect to see oscillations
since there is no intrinsic frequency scale for an infinite

well. It turns out that the phase (n− l)
∫ t

0 dt
′(ω0/b

2) in

Eq.(5) can be reexpressed as
∫ t

0 dt
′(En−El)/~. And this

gives rise to a cutoff,
∫ t

0 dt
′(E1 − E2)/~, which defines a

time lapse for each period

T =
hb(t)

E2(0)− E1(0)
. (17)
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FIG. 5: (color online)The solid line denotes the expectation

value of {x̂, p̂} with the ḃ = E1(0)/2~, β = 1/2E1(0). As in
Fig.3, the dashed line represents the energy expectation after
subtracting the adiabatic contribution.

This was checked to be consistent with the numerical
results in Fig.5. It comes as no surprise that we also
find the above mentioned features persist in the limit
of β → ∞; namely, when the initial wavefunction is a
pure state. In the mean time, we checked that the same
oscillatory feature in the energy expectation was retained
after the thermal averaging within the density matrix
method.
For fixed initial and final boundary positions, we now

examine the efficiency of different contracting rates for
the energy input. Figure 6 shows the extra energy input
compared to the adiabatic contribution oscillates with
the contracting time. In contrast to the similar definition
in Eq.(17), the time lapse T is now a constant for a fixed
b and thus is a well-defined period. Since our derivations
are applicable to all trapping systems by the choice of
basis in Eq.(15), we argue that the temporal oscillation
in energy expectation with a fixed period is a common
feature for all linearly-varying traps.

IV. DISCUSSIONS AND CONCLUSIONS

The moving boundaries are coupled through the atom
trapped inside, and the energy input can be used to define
the strength of this coupling. The oscillation with con-
tracting time is reminiscent of the dependence on spatial
distance between magnetic impurities in the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction mediated by
the conducting electrons. The coupling between mag-
netic side-layers in trilayer systems, such as the giant-
magnetoresistence samples, has been shown[16] to be a
simple extension of the RKKY formula:

∆E

A
= 2Im

∫ EF

−∞

dE

∫

d2k‖

(2π)2

∞
∑

n=1

−1

n

(

rRrLe
2ik⊥D

)n
,

(18)

where A is the interface area, EF is Fermi energy, rR/rL
represent the refraction coefficients in right/left inter-

0.4 0.6 0.8 1.0

t /t0

10
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E
(t

)-
E

( 
 )8

FIG. 6: (color online)The extra energy input in addition to
the adiabatic result is shown for different contracting times
in the unit t0 = 2~/E1(0). The final boundary is chosen
arbitrarily to be at b = 0.3 for the solid line and b = 0.2 for the
dashed line. Energies for the latter case have been suppressed
by 10 times in order to fit in the plot. A short t signifies a
fast contraction. This oscillatory feature is reminiscent of
that of RKKY coupling when plotted as a function of spatial
distance.

Oscillation Energy Input RKKY coupling

Definition E(t)− E(t → ∞) E(D)−E(D → ∞)

Ensemble Canonical Grand Canonical

Contributors Transition paths Scattering paths

Parameter space Contracting time Spatial distance

Period hb/Ec(0) π/kF

TABLE I: Comparison of quantum oscillations in the energy
input for a time-varying trap and in the RKKY coupling.

faces, and D denotes the spacer width. The perpendicu-
lar wavevector k⊥ is a function of energy E and parallel
wavevector k‖. The above equation indicates that the
coupling energy is contributed by all possible scattering
paths below the Fermi sea. Although Eq.(18) can not
be solved analytically, numerical results show that it is
an oscillatory function in D with period π/kF which is
half of the Fermi wavelength. This period is expected
because (1) the integrand consists of sinusoidal functions
and (2) the Fermi energy defines a natural cutoff in the
period[10]. In comparison, the oscillatory energy input
in the time-varying traps is the result of quantum in-
terference between different transition paths, and it also
contains a well-defined period as T = hb/Ec(0), as shown
in Eq.(17). Here Ec(0) plays the role of energy cutoff as
the Fermi energy in the RKKY scenario. Table I details
the comparisons between these two oscillations.
In conclusion, we find that the energy expectation in

time-varying traps is coupled to the dynamic fluctua-
tions through quantum frictions. Both the energy in-
put and position-momentum correlation exhibit oscilla-
tory features which we ascribe to the quantum interfer-
ence among different transition paths. The time lapse in
each period can be determined by the cutoff in transition
energies. By fixing the initial and final trap profiles, we



6

find that the energy input is also an oscillatory function of
the contracting time with an universal period hb/Ec(0)
for all linearly-varying trap. Mathematically we show
that the formalism of this problem is analogous to that
of indirect magnetic coupling in metals. Therefore, the
oscillation in the time domain of the time-varying trap
shares the same physical origin as the RKKY oscillation
in the spatial domain.

Appendix A: Harmonic Oscillator with a constant

Adiabatic Parameter

For a harmonic oscillator varying with a constant adia-
batic parameter µ ≡ ω̇/ω2, the time-dependent frequency
is

ω(t) =
ω(0)

1− µ · ω(0)t . (A1)

The phase factor can be solved as ω0 = ω(0)
√

1− µ2/4
by Eq.(2). It is obvious that the phase factor is only
real for |µ| ≤ 2. The energy expectation is calculated via
Eq.(9) as

〈Ĥ(t)〉 =~
ω(t)

γ

{[1

2
+ 〈ψ0|Λ+Λ|ψ0〉

]

+
µ

2
Re

[

e−2iγθ(t)(µ/2 + iγ)〈ψ0|ΛΛ|ψ0〉
]}

,

(A2)

where γ =
√

1− µ2/4 and θ(t) = ln( ω(t)
ω(0) )/µ. The ra-

tio between the oscillatory and non-oscillatory term is
time-independent, which reveals that the energy expec-
tation reduces to the adiabatic result when the time lapse
passes each period of the oscillatory term. For example,
if we can select the ground state for the frequency ω(0)
as the initial wave-packet, the energy expectation can be
derived from Eq.(A2)

E(t) = ~
ω(t)

2γ2

(

1− µ2

4
cos

(

2γθ(t)
)

)

. (A3)

The condition 2γθ(tn) = 2nπ defines the time lapses at
which the energy returns to the adiabatic results ~ω(t)/2
or, in other words, becomes frictionless. These observa-
tions are consistent with those reported in Ref.[12]. Our
Eq.(A3) is equivalent to their Eq.(8) after replacing the
2γ by iΩ. In contrast to our approach that starts from
the initial wavefuntion, Salamon and Rezek[5, 12] esti-
mated this energy by connecting the expectaion values
of Hamiltonian Ĥ , Lagrangian L̂ and correlation Ĉ for a
time-dependent harmonic oscillator. It will be heuristic
to clarify the transition at µ = 2 by comparing our for-
mulae, Eqs.(9) and (11), and Salamon and Rezek’s in a
future research.

Appendix B: Adiabatic and Sudden limit

To get a more comprehensive understanding of the os-
cillatory feature in time-varying traps, let us examine
Eq.(9) in the adiabatic and sudden limits. The compe-
tition between the time scales of the wave-packet and
the trap variation is best exemplified in the special case
of a linear expansion or contraction, ḃ = v/L0 and

b̈ = 0. The adiabatic condition can be imposed by ei-
ther (1) |

√
2ω̇/(8ω2)| ≪ 1, which states that the en-

ergy input from the time-varying trap is much smaller
than the intrinsic energy of the wave-packet[17] or the
more direct (2) |v/vp| ≪ 1 which restricts the potential
to varying much slower than the averaged atomic speed,
vp =

√
2~/(mbL0), in a trap with an intrinsic angular fre-

quency, ω(t) = ω0/b
2. Both approaches guarantee that

(bḃ/ω0) ≪ 1 and Eq.(9) can be simplified to give the
energy in the adiabatic approximation as

〈Ĥ(t)〉 ≈ ~ω0

b2
(

N +
1

2

)

=
〈Ĥ(0)〉
b2

, (B1)

where N = 〈a+a〉. The oscillation term can be neglected
in this limit.
The sudden approximation describes the other limit of

(bḃ/ω0) ≫ 1 when the atomic motion can not catch up
with the trap variation. The Taylor expansion works for
the exponential term in Eq.(9) at this limit

e−2i
∫

t

0
dt′ω0/b

2

=
∑

n=0

1

n!

[

2i
ω0

bḃ

(

1− b
)]n

. (B2)

Keep the expansion up to the fourth order and insert to
Eq.(9) while retaining the lowest order term in ω0/(bḃ)
give the energy expectation as

〈Ĥ〉 ≈ ~ω0

(

N +
1

2

)

+
~ω0

4

( 1

b4
− 1

)

〈(a+ a+)2〉

= 〈Ĥ(0)〉+ 1

2

(

ω2(t)− ω2
0

)

〈x2〉 (B3)

with ω(t) = ω0/b
2. This is the same result as is ob-

tained by the time-independent perturbation theory. It
is worth mentioning that, although this conclusion is in-
dependent of the sign of ḃ for a harmonic potential, the
sudden approximation will break down terribly when ap-
plied to a contracting infinite well because of the shrink-
age of Hilbert space. Strictly speaking, the oscillatory
term that we highlighted in Eq.(9) does not show up in
the adiabatic and sudden limits for different reasons. In
the former, it is suppressed due to the smallness of the co-
efficient in Eq.(9), while the Taylor expansion of Eq.(B2)
guarantees its minuteness in the latter. Finally, note that
the energy expectation does not depend on ḃ explicitly
in these two limits.
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