

All papers

(Help | Advanced search)

- Go!

arXiv.org > nucl-th > arXiv:1106.5870

Nuclear Theory

Can transport peak explain the low-mass enhancement of dileptons at RHIC?

Yukinao Akamatsu, Hideki Hamagaki, Tetsuo Hatsuda, Tetsufumi Hirano

(Submitted on 29 Jun 2011)

We propose a novel relation between the low-mass enhancement of dielectrons observed at PHENIX and transport coefficients of QGP such as the charge diffusion constant \$D\$ and the relaxation time \$\tau_{\rm J}\$. We parameterize the transport peak in the spectral function using the second-order relativistic dissipative hydrodynamics by Israel and Stewart. Combining the spectral function and the full (3+1)-dimensional hydrodynamical evolution with the lattice EoS, theoretical dielectron spectra and the experimental data are compared. Detailed analysis suggests that the low-mass dilepton enhancement originates mainly from the high-temperature QGP phase where there is a large electric charge fluctuation as obtained from lattice QCD simulations.

Comments:	To appear in the conference proceedings for Quark Matter 2011,
	May 23 - May 28, Annecy, France
Subjects:	Nuclear Theory (nucl-th); High Energy Physics -
	Phenomenology (hep-ph); Nuclear Experiment (nucl-ex)
Cite as:	arXiv:1106.5870 [nucl-th]
	(or arXiv:1106.5870v1 [nucl-th] for this version)

Submission history

From: Yukinao Akamatsu [view email] [v1] Wed, 29 Jun 2011 08:21:08 GMT (30kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:
 PDF PostScript Other formats
Current browse context: nucl-th < prev next >

new | recent | 1106

Change to browse by:

hep-ph nucl-ex

Search or Article-id

References & Citations

- INSPIRE HEP (refers to | cited by)
- NASA ADS

Bookmark(what is this?)