

M. Hirai, S. Kumano

Cornell University Library

arXiv.org > hep-ph > arXiv:1106.1553

High Energy Physics - Phenomenology

evolution equations for

fragmentation functions

Search or Article-id

All papers 🚽 Go!

(Help | Advanced search)

Download:

- PDF
- PostScript
- Other formats

Current browse context: hep-ph

< prev | next >

new | recent | 1106

Change to browse by:

hep-ex nucl-th

References & Citations

- INSPIRE HEP (refers to | cited by)
- NASA ADS

Bookmark(what is this?)

(Submitted on 8 Jun 2011 (v1), last revised 23 Dec 2011 (this version, v2))

Numerical solution of \$Q^2\$

Semi-inclusive hadron-production processes are becoming important in highenergy hadron reactions. They are used for investigating properties of quarkhadron matters in heavy-ion collisions, for finding the origin of nucleon spin in polarized lepton-nucleon and nucleon-nucleon reactions, and possibly for finding exotic hadrons. In describing the hadron-production cross sections in high-energy reactions, fragmentation functions are essential quantities. A fragmentation function indicates the probability of producing a hadron from a parton in the leading order of the running coupling constant \$\alpha s\$. Its \$Q^2\$ dependence is described by the standard DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolution equations, which are often used in theoretical and experimental analyses of the fragmentation functions and in calculating semi-inclusive cross sections. The DGLAP equations are complicated integro-differential equations, which cannot be solved in an analytical method. In this work, a simple method is employed for solving the evolution equations by using Gauss-Legendre quadrature for evaluating integrals, and a useful code is provided for calculating the \$Q^2\$ evolution of the fragmentation functions in the leading order (LO) and next-to-leading order (NLO) of \$\alpha_s\$. The renormalization scheme is \$\overline{MS}\$ in the NLO evolution. Our evolution code is explained for using it in one's studies on the fragmentation functions.

Comments:	16 pages, 6 figures, To be published in Computer Physics Communications
Subjects:	High Energy Physics - Phenomenology (hep-ph) ; High Energy Physics - Experiment (hep-ex); Nuclear Theory (nucl-th)
Report number:	KEK-TH-1459
Cite as:	arXiv:1106.1553 [hep-ph]
	(or arXiv:1106.1553v2 [hep-ph] for this version)

Submission history

From: Masanori Hirai [view email] [v1] Wed, 8 Jun 2011 12:50:21 GMT (579kb) [v2] Fri, 23 Dec 2011 08:54:49 GMT (835kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.