2005 Vol. 43 No. 1 pp. 127-132 DOI:

Tensor Interaction Effect in Dibaryon

CHEN Ling-Zhi, ¹ PANG Hou-Rong, ^{1,2} PING Jia-Lun, ^{3,4} and WANG Fan^{1,4}

¹ Department of Physics, Nanjing University, Nanjing 210093, China
² Institute of Theoretical Physics, the Chinese Academy of Sciences, Beijing 100080, China
³ Department of Physics, Nanjing Normal University, Nanjing 210097, China
⁴ Center for Theoretical Physics, Nanjing University, Nanjing 210093, China (Received: 2004-5-10; Revised:)

Abstract: The gluon and Goldstone boson induced tensor interaction effect on the dibaryon mass and the D-wave decay width has been studied in the quark delocalization, color screening model. The effective S-D wave transition interactions induced by gluon and Goldstone boson exchanges decrease quickly as the increasing of the channel strangeness. The K and η meson tensor contribution is negligible in this model. No six-quark state in the light flavor world can become a bound one by the help of these tensor interactions except the deuteron. The partial D-wave decay width of $IJ^{P}=\frac{1}{2}^{2+} N\Omega$ state to spin 0, 1 Λ =final state is 20.7 keV and 63.1 keV respectively. It is a very narrow dibaryon resonance and might be detected in the relativistic heavy ion reaction by the existing RHIC detectors through the reconstruction of the Λ = vertex mass and the future COMPAS detector at CERN and FAIR project in Germany.

PACS: 12.39.-x, 14.20.Pt, 13.75.Cs Key words: dibaryon, tensor interaction, extended quark delocalization color screening model

[Full text: PDF]

Close