2005 Vol. 43 No. 1 pp. 133-138 DOI:

Single Charged Top-Pion Production at the Next Generatione⁺e⁻ Colliders WANG Xue-Lei, DU Lin-Lin, and XU Wen-Na

College of Physics and Information Engineering, Henan Normal University, Xinxiang 453002, China (Received: 2004-4-26; Revised:)

Abstract: The single charged top-pion production processes e⁺e⁻→t\bar{b}\Pi_t⁻ and e⁺e⁻→ W⁺\Pi_t⁻ are studied in the framework of top-color-assisted technicolor (TC2) model. Our studies show that the cross section $\sigma(e^+e^- \rightarrow t \ b)\Pi_t^-)$ reaches the level of tens of fb and $\sigma(e^+e^- \rightarrow W^+\Pi_t^-)$ reaches the level of a few fb. With the yearly integrated luminosity of L~500 fb⁻¹ expected at the planned colliders, one could collect thousands of charged top-pion of events via the process e⁺e⁻ → t\bar{b}\Pi_t^- and hundreds of events via the process e⁺e⁻ → W⁺\Pi_t^-. The flavor changing decay mode $\Pi_t^- \rightarrow b \ a \ c$ is the best channel to detect charged top-pion due to the clean SM background. With a large number of events and the clean background, the charged top-pion should be observable at the planned colliders. Therefore, our studies in this paper can help us to search for charged top-pion, and furthermore, to test the TC2 model.

PACS: 12.60.Nz, 14.80.Mz, 12.15.Lk, 14.65.Ha Key words: top-pion, top-color-asisted technicolor model, linear colliders

[Full text: PDF]

Close