2006 Vol. 46 No. 3 pp. 507-513 DOI:

Re-study of Nucleon Pole Contribution in $J/\psi \rightarrow N\overline{N}\pi$ Decay

ZONG Yuan-Yuan, ^{1, 2} SHEN Peng-Nian, ^{1, 3, 4} ZOU Bing-Song, ^{1, 3, 4} LIU Ji-Feng, ² and LIANG Wei-Hong²

¹ Institute of High Energy Physics, the Chinese Academy of Sciences, P.O. Box 918(4), Beijing 100049, China ² Department of Physics, Guangxi Normal University, Guilin 541004, China ³ Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China ⁴ Institute of Theoretical Physics, the Chinese Academy of Sciences, Beijing 100080, China (Received: 2005-12-7; Revised:) Abstract: We re-study nucleon pole contribution in $J/\psi \rightarrow N\bar{N}\pi$ decays by including the imaginary part for the propagator of the off-shell nucleon with energy above πN threshold. It is found that when including the imaginary part in the propagator, the branching ratio of the decay

width will descend about 11% compared with the result without including the imaginary part, no matter whether including the off-shell form factors or not. It also leads to a phase of up to 25° for the off-shell nucleon propagator at invariant mass around 1400 MeV. This effect needs to be considered for detailed partial wave analysis of N* resonances around this mass region.

PACS: 13.20.Gd Key words: J/w decay, form factor

[Full text: PDF]

Close