

arXiv.org > nucl-th > arXiv:1106.2954

Nuclear Theory

Periodic Box FHNC calculations of neutron star crustal matter. (I)

Nicola Bassan, Stefano Fantoni, Kevin E. Schmidt

(Submitted on 15 Jun 2011)

Neutron star crustal matter, whose properties are relevant in many models aimed at explaining observed astrophysical phenomena, has so far always been studied using a mean field approach. In order to check the results obtained in this way, a sensible next step is to make use of a realistic nuclear potential. The present paper extends the periodic-box Fermi HyperNetted Chain method to include longitudinal-isospin dependence of the correlations, making feasible a study of asymmetric crustal matter. Results are presented for the symmetry energy, the low-density neutron star equation of state and the single particle neutron and proton energies.

27 pages, submitted to PRC
Nuclear Theory (nucl-th) ; Solar and Stellar Astrophysics (astro-ph.SR)
10.1103/PhysRevC.84.035807
arXiv:1106.2954 [nucl-th] (or arXiv:1106.2954v1 [nucl-th] for this version)

Submission history

From: Nicola Bassan [view email] [v1] Wed, 15 Jun 2011 12:32:22 GMT (460kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

0	h	A	- 1-
Searc	n or /		ie=io
000.0			

All papers 🚽 Go!

(Help | Advanced search)

Download:

- PDF
- PostScript
- Other formats

Current browse context: nucl-th

< prev | next >

new | recent | 1106

Change to browse by:

astro-ph astro-ph.SR

References & Citations

- INSPIRE HEP (refers to | cited by)
- NASA ADS

