
ar
X

iv
:1

10
6.

22
70

v2
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
7 

O
ct

 2
01

1

Thermodynamic Geometry, Phase Transitions,
and the Widom Line

George Ruppeinera�, Anurag Sahayby, Tapobrata Sarkar bz,
Gautam Senguptabx

a Division of Natural Sciences,
New College of Florida, 5800 Bay Shore Road,

Sarasota, Florida 34243-2109

b Department of Physics,
Indian Institute of Technology,

Kanpur 208016,
India

Abstract

We construct a novel approach, based on thermodynamic geometry, to
characterize �rst-order phase transitions from a microscopic perspective,
through the scalar curvature in the equilibrium thermodynamic state space.
Our method resolves key theoretical issues in macroscopic thermodynamic
constructs, and furthermore characterizes the Widom line through the
maxima of the correlation length, which is captured by the thermody-
namic scalar curvature. As an illustration of our method, we use it in
conjunction with the mean �eld Van der Waals equation of state to pre-
dict the coexistence curve and the Widom line. Where closelyapplicable,
it provides excellent agreement with experimental data. The universality
of our method is indicated by direct calculations from the NIST database.
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Macroscopic properties of matter undergo discontinuous changes along a �rst-
order liquid-gas coexistence curve that culminates in a critical point[1], and is
extendable into the supercritical region as the Widom line [2], [3], [4] charac-
terized by the locus of points with maximum correlation length� . Historically,
such phase coexistence curves were modeled by the van der Waals (vdW) equa-
tion augmented by the Maxwell \equal area" construction. This approach lies
at the foundation of the modern thermodynamic picture characterizing coexist-
ing phases through equal Gibbs free energies. However, the vdW-Maxwell theory
su�ers from several unresolved conceptual drawbacks [5], [6], and furthermore, an
analytic prediction of the Widom line from any equation of state is yet unknown.
Here we devise a novel construction to characterize liquid-gas phase transitions
based on the continuity of� between the phases, with the Riemannian geometric
thermodynamic scalar curvaturejRj � � 3 [7], which also allows, for the �rst time,
a direct computation of the Widom line. The idea that the correlation lengths
of the coexisting phases are equal, and its computational realization through R,
provides a method for predicting the phase coexistence curve when used in con-
junction with any equation of state, or experimental data. We illustrate this point
here with the vdW equation, settling a century old problem of thermodynamic
computation. We also determine the location of the Widom line for several 
uids
both with the vdW equation and with data from the NIST database [8]. Our
results may be used to predict phase behaviour in a wide variety of systems, from
boiling water to black holes, and promises to have signi�cant impact ondiverse
areas of physical sciences and engineering.

The key physical idea in our analysis originates from the microscopic picture
of �rst-order liquid-gas phase transitions due to Widom [9]. In this framework,
spontaneous density 
uctuations cause the local density� (~r) in a single phase

uid to deviate from the overall mean density� 0 in some complex, time dependent
manner. Mathematically, � (~r) = � 0 corresponds to an intricate contour surface
that separates two sides with local mean densities� > � 0 and � < � 0. A straight
line through the 
uid intersects this surface at points spaced an average distance
� apart, where � is the correlation length characterizing the size of organized
structures inside the 
uid. � is generally small in a disorganized system like an
ideal gas, but diverges at the critical point for real 
uids. When a single phase

uid is very near a �rst-order phase transition, a small amount of asecond,
minority phase will begin to form. A reference point in this single phase
uid
typically has local density close to that of either of the two incipient coexisting
phases. The typical density di�erencej� � j across the contour surface� (~r) =
� 0 thus equals that of the two phases. Reversing the role of the majority and
minority phases leaves this argument unchanged, with the samej� � j. � in the
single phase plays a similar role in anticipating the properties in the two phases
since � is the thickness of the interface between the two [9]. This anticipated
interface thickness must be the same approaching the phase transition with either
of the two phases being the majority phase, and the correlation length � should
thus be the same in the two coexisting phases, the condition at the heart of our
approach.

For experimental predictability, we need an estimate of� , allowing a thermo-
dynamic expression for the equality of the correlation lengths at the interface.
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Figure 1: -R for the coexisting liquid and gas phases versus (T � Tc) =Tc for
normal Hydrogen calculated with the NIST 
uid database, plotted on the loga-
rithmic scale. At the indicated value,jRj � vg, wherevg is the molecular volume
in the gas phase. Below this value ofjRj, its interpretation as the correlation
length loses signi�cance.

This can be realized using the Riemannian geometry of the equilibrium ther-
modynamic state space of the system through the metricg�� = � 1

kB

@2s
@a� @a� (� ,

� = 1,2), where kB is Boltzmann's constant, ands, a1, and a2 denote the en-
tropy, energy, and particle number per unit volume, respectively [7]. The metric
is based on Gaussian 
uctuation theory whose breakdown takes place when the
volume of the system is of the order of the Riemann scalar curvature R of the
thermodynamic metric. This volume is expected to be the correlationvolume
� 3, leading to the desired connection [7],jRj � � 3. Experimental predictions
for the coexistence curves of �rst-order phase transitions canthus be obtained
from the equality of jRj calculated in the two coexisting phases. We call this the
R-crossing method. At the critical point,R diverges. In the supercritical region
beyond the critical point, the locus of the maximum ofjRj, via jRj � � 3, provides
a theoretical prediction of the Widom line.

As a direct test of our proposal, we calculateR for Hydrogen in both phases
using the NIST 
uid database [8], [10] and its program REFPROP. These pro-
vide data based on phenomenological equations of state, with �t parameters
determined by matching to experimental data for 
uids. Results are shown in
�g.(1), where agreement between theR's in the two phases is seen to be excellent
near the critical point, better than 1% in the range 0:96 < T=Tc < 1, whereT is
the temperature andTc its critical value. By contrast, at T=Tc = 0:96, the molar
densities of the coexisting liquid and gas phases di�er from each other by a factor
of � 3.

Our R-crossing method complements the canonical macroscopic rule for�rst-
order phase transitions, namely the equality of the molar Gibb's freeenergiesg
of the coexisting phases [1]. Applied to the vdW equation however, this macro-
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Figure 2: R vs pr along an isotherm of Helium witht r = 0:86 in the lower half
and vr vs pr along the samet r in the upper half (where thevr values have been
multiplied by a factor of 3). The blue and green curves represent the stable
branches, and the red curve is the unstable branch. We mark by \R-crossing"
the pr where theR's of the liquid and gas phases become equal (withcv = 1:5
and 1:2 on the gas and liquid sides respectively). The line labeled \Maxwell"
represents the correspondingpr from Maxwell's construction.

scopic equality has unresolved conceptual problems. Finding states with equalg's
involve contentious issues of integration along a reversible path through a thermo-
dynamically unstable region in the Maxwell construction, or throughthe critical
point in Kahl's approach [11]. Such conceptual di�culties, which have been de-
bated for over a century, are entirely bypassed in our construction. Further, our
method naturally contains a measure of its limit of applicability, since for the
construction to be e�ective, � 3 should be large enough to encompass a number
of atoms adequate for a thermodynamic approach to be reasonable. This limits
us to a regime not too far from the critical point. We �nd that the R-crossing
method retains its viability down to volume regimes containing but about a single
molecule.

As a simple theoretical example, we apply theR-crossing method to the uni-
versal vdW equation in its reduced form,

pr =
8t r

3vr � 1
�

3
v2

r
; (1)

wherepr = P=Pc, t r = T=Tc, vr = v=vc and P and v are the pressure and molar
volume, with the subscriptc denoting their critical values. The critical quantities
are known to be related to the vdW constantsa and b by Pc = a

27b2 , Tc = 8a
27kB T

and vc = 3b. The Maxwell equal-area construction yields the limiting slope of the
coexistence curvedpr =dtr = 4, independent of the 
uid and its heat capacity. Our
R-crossing method inherits the same limiting slope here. This number is closely
followed only by Helium and Hydrogen, for which this example is expected to
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Figure 3: Phase coexistence and the Widom line for Helium (Tc = 5:19K, Pc =
2:26 bars) on the left and Hydrogen (Tc = 33:19K, Pc = 13:30bars) on the
right. The coexistence curve is calculated from vdW with the Maxwellequal-area
construction and with R-crossing, and compared with experimental data from
NIST [8]. The Widom line is calculated by �nding the locus of maximum values
of jRj both with vdW and from NIST data. We compare with the maximum
values ofcp from experimental data (NIST). The liquid and gas heat capacities
cvl and cvg are indicated for vdW. In the supercritical region, we usecvg

be maximally e�ective. R can be calculated here via the thermodynamic metric
using standard formulae [7] and givesR = A � B , where

A = �
b
3

3vr � 1

cv (pr v3
r � 3vr + 2) 2 ; (2)

and

B = cv

�
p2

r v
5
r � 9pr v4

r + 12pr v3
r � 27v2

r � pr v2
r + 27vr � 3

�

+18vr

�
pr v3

r + 1
�

(3)

wherecv is the dimensionless molecular speci�c heat at constant volume (assumed
constant, though possibly di�erent in the liquid and gas phases) andb plays no
role in our subsequent analysis.

For vdW isotherms with given t r < 1, substituting pr from eq.(1) into eqs.(2)
and (3) results in two physical branches forR, corresponding to the liquid and
gas phases (see color coded �g.(2)), withR diverging at the end points. The value
of pr where theR values are equal (i.e they cross) is interpreted as the reduced
saturation pressure corresponding tot r . For the cases we consider here,cv on the
gas side is taken as 1.5, the ideal gas value. On the liquid side, we have chosen
average values determined from NIST data [8], over the range of temperatures
that we are interested in. Equivalently, for vdW isobars, theR-crossing method
can be used to predict the saturation temperature.

In the supercritical region, isobaricjRj exhibits a local maximum with respect
to t r , whose locus is naturally interpreted as the Widom line, signifying a crossover
for certain dynamical 
uid properties from gas like on the low pressure side to
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P=Pc T sat
R (vdW) T sat

ex jRj=vg

0.4 36.04 37.97 0.60
0.5 37.68 39.41 1.16
0.6 39.24 40.66 2.36
0.8 42.09 42.76 15.35
0.9 43.33 43.66 76.48
0.4 122.89 129.16 0.57
0.5 128.19 133.93 1.11
0.6 133.34 138.07 2.23
0.8 142.70 145.00 14.29
0.9 146.85 147.98 72.49

P=Pc TW
R (vdW) TW

R (NIST) TW
ex

1.1 45.56 45.25 45.26
1.2 46.57 45.95 46.01
1.4 48.43 47.26 47.39
1.6 50.15 48.50 48.64
2.0 53.26 50.83 50.79
1.1 154.32 153.15 153.21
1.2 157.74 155.47 155.60
1.4 164.04 159.72 160.00
1.6 169.84 163.69 163.89
2.0 180.41 170.96 170.49

Table 1: Saturation temperatures on the left and Widom line temperatures on
the right (in Kelvins) for Neon (Tc = 44:49 K, Pc = 26:79 bars) on the upper
part and Argon (Tc = 150:69 K, Pc = 48:63 bars) on the lower part.T sat

R (vdW)
is the prediction of the saturation temperature from theR-crossing method, us-
ing the vdW equation, and is compared with experimental values fromNIST.
Corresponding values ofjRj=vg are also shown to indicate the validity of our
method. Widom line predictions from theR-maximization method are obtained
both from vdW with cv = 1:5 (TW

R (vdW)), and from NIST ( TW
R (NIST)). We

have also shown the prediction of the Widom line obtained from maximising cp

as TW
ex .

liquid like on the high pressure side [2], [3], [4]. We can calculate the Widom
line as per its de�nition through jRj � � 3, free from the theoretical di�culty of
characterizing it via the maximum of the speci�c heatcp as is conventional in the
literature [3]. To �nd maxima for jRj and cp, we search along isobars.

A natural estimate for the validity of our analysis for vdW is o�ered by the
dimensionless quantityjRj=vg, where vg is the coexistence molecular volume in
the gas phase.jRj � vg implies that � 3 is greater than a molecular volume, and
we are in a regime where our analysis is strictly valid. We �nd that for vdW, this
restricts us to t r & 0:8 along the coexistence curve (a value indicated in �g.(3)
and table (1)), and to pr . 10, in the supercritical region.

Figure (3) summarizes our results for Helium and Hydrogen. Table (1) sup-
plements these for Neon and Argon. From �g.(3), it can be seen that the R-
crossing method, in conjunction with vdW, predicts excellent results within its
range of applicability. Away from criticality, deviation from data is alsodue to
the mean �eld nature of the vdW equation of state. Direct application of the
R-maximization method using NIST data in the supercritical regime shows strik-
ing agreement with experimentalcp maximum values even far from the scaling
region.

In conclusion, we have constructed a novel geometrical technique to charac-
terize liquid-gas phase transitions from a microscopic perspective,through the
thermodynamic scalar curvatureR. When applied in conjunction with the vdW
equation, this bypasses theoretical issues a century old with the Maxwell equal
area construction and its variants. Our technique generalizes to any phenomeno-
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logical equation of state, including those obtained as multi parameter �ts to
experimental data. This analysis further provides the �rst directtheoretical con-
struction of the Widom line, without using any ad hoc thermodynamic response
function.

Our method uni�es concepts in Riemannian geometry, thermodynamics, phase
transitions, critical and supercritical phenomena. Although we have primarily
applied our technique to liquid-gas phase transitions, the method should be uni-
versally applicable to any �rst-order phase transition. This makes itof crucial
signi�cance to a diverse range of disciplines in physical, chemical and biological
sciences, and engineering. It further generalises even to gravitational systems like
anti de-Sitter black holes which also appear to exhibit liquid-gas like �rst-order
phase transitions [12].
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