
Advances in High Energy Physics 
Volume 2009 (2009), Article ID 234147, 9 pages
doi:10.1155/2009/234147

Research Article

Semi-Simple Extension of the (Super) Poincaré 
Algebra

Dmitrij V. Soroka and Vyacheslav A. Soroka

Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., 61108 
Kharkov, Ukraine

Received 7 January 2009; Accepted 11 March 2009

Academic Editor: Kingman Cheung 

Copyright © 2009 Dmitrij V. Soroka and Vyacheslav A. Soroka. This is an open access article distributed under 
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited.

Abstract

A semi-simple tensor extension of the Poincaré algebra is proposed for the arbitrary dimensions D. It is 
established that this extension is a direct sum of the D-dimensional Lorentz algebra so(D−1, 1) and D-
dimensional anti-de Sitter (AdS) algebra so(D−1, 2). A supersymmetric also semi-simple generalization of this 
extension is constructed in the D=4 dimensions. It is shown that this generalization is a direct sum of the 4-
dimensional Lorentz algebra so(3, 1) and orthosymplectic algebra osp(1, 4) (super-AdS algebra). 

1. Introduction

In the papers [1–7] the Poincaré algebra for the generators of the rotations  and translations  in  

dimensions, 

has been extended by means of the second rank tensor generator  in the following way:

 

where  is some constant (Note that, to avoid the double count under summation over the pair antisymmetric 

indices, we adopt the rules which are illustrated by the following example:  
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(1.1)

  

(1.2)



where  are structure constants, and so on.)

 

Such an extension makes common sense, since it is homomorphic to the usual Poincaré algebra (1.1). Moreover, 
in the limit  the algebra (1.2) goes to the semidirect sum of the commutative ideal , and Poincaré algebra 

(1.1). 

It is remarkable enough that the momentum square Casimir operator of the Poincaré algebra under this 
extension ceases to be the Casimir operator, and it is generalized by adding the term linearly dependent on the 
angular momentum 

where . Due to this fact, an irreducible representation of the extended algebra (1.2) has to 

contain the fields with the different masses [4, 8]. This extension with noncommuting momenta has also 
something in common with the ideas of the papers [9–11] and with the noncommutative geometry idea [12]. 

It is interesting to note that in spite of the fact that the algebra (1.2) is not semi-simple and therefore has a 

degenerate Cartan-Killing metric tensor nevertheless there exists another nondegenerate invariant tensor  in 

adjoint representation which corresponds to the quadratic Casimir operator (1.4), where the matrix  is inverse 

to the matrix .
 

There are other quadratic Casimir operators  

Note that the Casimir operator (1.6), dependent on the Levi-Civita tensor , is suitable only for the  

dimensions. 

It has also been shown that for the dimensions  the extended Poincaré algebra (1.2) allows the 

following supersymmetric generalization: 

with the help of the supertranslation generators . In (1.7)  is a charge conjugation matrix,  is some constant, 

and , where  is the Dirac matrix. Under this supersymmetric generalization the quadratic Casimir 

operator (1.4) is modified into the following form: 

while the form of the rest quadratic Casimir operators (1.5), (1.6) remains unchanged. 

In the present paper we propose another possible semi-simple tensor extension of the -dimensional Poincaré 

algebra (1.1) which turns out a direct sum of the -dimensional Lorentz algebra  and -dimensional 

anti-de Sitter (AdS) algebra . For the case  dimensions we give for this extension a 

supersymmetric generalization which is a direct sum of the 4-dimensional Lorentz algebra  and 

orthosymplectic algebra  (super-AdS algebra). In the limit this supersymmetrically generalized extension 

go to the Lie superalgebra (1.2), (1.7). 
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Let us note that the introduction of the semi-simple extension of the (super) Poincaré algebra is very important 
for the construction of the models, since it is easier to deal with the nondegenerate space-time symmetry. 

2. Semi-Simple Tensor Extension

Let us extend the Poincaré algebra (1.1) in the  dimensions by means of the tensor generator  in the 

following way: 

where  and  are some constants. This Lie algebra, when the quantities  and  are taken as the generators 

of a homomorphism kernel, is homomorphic to the usual Lorentz algebra. It is remarkable that the Lie algebra 
(2.1) is semi-simple in contrast to the Poincaré algebra (1.1) and extended Poincaré algebra (1.2). 

The extended Lie algebra (2.1) has the following quadratic Casimir operators: 

Note that in the limit  the algebra (2.1) tends to the algebra (1.2) and the quadratic Casimir operators (2.2), 

(2.3), and (2.4) are turned into (1.4), (1.5), and (1.6), respectively. 

The symmetric tensor  

with arbitrary constants  and  is invariant with respect to the adjoint representation 

 

Conversely, if we demand the invariance with respect to the adjoint representation of the second rank 
contravariant symmetric tensor, then we come to the structure (2.5) (see also the relation (32) in [6]). 

The semi-simple algebra (2.1)  

has the nondegenerate Cartan-Killing metric tensor  

which is invariant with respect to the coadjoint representation  
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With the help of the inverse metric tensor  we can construct the quadratic Casimir operator which, 

as it turned out, has the following expression in terms of the quadratic Casimir operators (2.2) and (2.3):  

that corresponds to the particular choice of the constants  and  in (2.5).

 

The extended Poincaré algebra (2.1) can be rewritten in the form  

where the metric tensor  has the following nonzero components: 

 

The generators  

form the Lorentz algebra , and the generators 

 

form the algebra (Note that in the case  we obtain the anti-de Sitter algebra .). The 

algebra (2.11)–(2.13) is a direct sum  of the -dimensional Lorentz algebra and -

dimensional anti-de Sitter algebra, correspondingly. 

The quadratic Casimir operators , and  of the algebra (2.11)–(2.13) are expressed in 

terms of the operators  (2.2),  (2.3), and  (2.4) in the following way:  

3. Supersymmetric Generalization

In the case  dimensions the extended Poincaré algebra (2.1) admits the following supersymmetric 

generalization: 

  
(2.9)
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(2.11)

  (2.12)

  
(2.13)
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where  are the supertranslation generators. 

Under such a generalization the Casimir operator (2.2) is modified by adding a term quadratic in the 
supertranslation generators 

whereas the form of the rest quadratic Casimir operators (2.3) and (2.4) is not changed. In (3.2) 

 is a set of the generators for also the semi-simple extended superalgebra (2.1), (3.1). 

The tensor  

is invariant with respect to the adjoint representation  

where  is a Grassmann parity of the quantity . In (3.4)  and  are arbitrary constants and nonzero 

elements of the matrix  equal to the elements of the matrix  followed from (2.3). Again, by demanding the 

invariance with respect to the adjoint representation of the second rank contravariant tensor 

, we come to the structure (3.4) (see also the relation (32) in [6]). 

The semi-simple Lie superalgebra (2.1) (3.1) has the nondegenerate Cartan-Killing metric tensor  (see the 

relation (A.6) in the Appendix A) which is invariant with respect to the coadjoint representation  

With the use of the inverse metric tensor , 

 

we can construct the quadratic Casimir operator (see the relation (A.11) in the Appendix A) which takes the 
following expression in terms of the Casimir operators (2.3) and (3.2):  

that meets the particular choice of the constants  and  in (3.4).

 

In the  case the extended superalgebra (2.1), (3.1) can be rewritten in the form of the relations (2.11)–

(2.13) and the following ones:  

  

(3.1)

  
(3.2)

  
(3.3)

  (3.4)

  (3.5)

  (3.6)

  
(3.7)

  
(3.8)
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where  

The generators  (2.15) form the Lorentz algebra  and the generators  (2.16),  form the 

orthosymplectic algebra . We see that superalgebra (2.11)–(2.13), (3.8)–(3.10) is a direct sum 

 of the 4-dimensional Lorentz algebra and 4-dimensional super-AdS algebra, respectively. 

In this case the Casimir operator (2.17) is modified by adding a term quadratic in the supertranslation generators  

while the form of the quadratic Casimir operators (2.18) and (2.19) is not changed. 

4. Conclusion

Thus, we proposed the semi-simple second rank tensor extension of the Poincaré algebra in the arbitrary 
dimensions  and super-Poincaré algebra in the  dimensions. It is very important, since under construction of 

the models, it is more convenient to deal with the nondegenerate space-time symmetry. We also constructed the 
quadratic Casimir operators for the semi-simple extended Poincaré and super Poincaré algebra. 

It is interesting to develop the models based on these extended algebra. The work in this direction is in progress. 

Appendix

A. Properties of Lie Superalgerbra

Permutation relations for the generators  of Lie superalgebra are 

 

Structure constants  have the Grassmann parity 

 

following symmetry property:  

and obey the Jacobi identities  

where the symbol  means a cyclic permutation of the quantities , and . In the relations (A.1)–(A.4) 

every index  takes either a Grassmann-even value  or a Grassmann-odd one . The relations 

(A.1) have the following components:  

  

(3.11)

  
(3.12)

  (A.1)

  
(A.2)

  (A.3)

  
(A.4)



The Lie superalgebra possesses the Cartan-Killing metric tensor  

which components are  

As a consequence of the relations (A.3) and (A.4) the tensor with low indices  

has the following symmetry properties:  

For a semi-simple Lie superalgebra the Cartan-Killing metric tensor is nondegenerate and therefore there exists 

an inverse tensor ,  

In this case, as a result of the symmetry properties (A.9), the quantity  

is a Casimir operator  
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