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Abstract

Using the method of QCD sum rules, we estimate the energy of the lowest hybrid charmonium state, and find it
to be at the energy of the W (25) state, about 600 Mev above the 1/W(15) state. Since our solution is not
consistent with a pure hybrid at this energy, we conclude that the W (25) state is probably an admixed oo and
hyhbrid oo g state, From this conjecture, we find a possible explanation of the famous p-n puzzle.

1. Introduction

& hybrid meson is a state composed of a quark and antiguark colar octet, along with a valence gluon, giving a
color zero particle, Hybrids are of great interest in studying the nature of QCD, The nonperturbative method of
QCD sum rules [1, 2] has long been used to predict the energies of light guark hybrid mesons [3, 4] and hybrid
baryons (see [5]). In the present work, we use this method to estimate the energy of the lowest charmonium
hybrid, & major motivation for the present work is to understand the nature of the ¥1{25) state, and to find a
possible explanation of the long-standing g2 - 7 puzzle.

The o - n puzzle concerns the branching ratios for hadronic decays of the ¥1(25) state compared to the 7/ ¥(15)

state. By taking ratios of hadronic decays to gamma decays for these heavy-guark states, the wave functions at
the arigin cancel, and by using the lowest-order diagrams, one obtains the ratios of branching rates for two
charmonium states:

qo BlF25) k) BI¥(2S) seteT)

) ) 1.1
807 ¥(15) = k) 5(”?(15)_)9),9_)_0.13, (1.1)

the so-called 13% rule. For the ¥1(25) state compared to the 7/ ¥(15) state, however, the hadronic (e.g., 2-n)
decay ratio is more than an order of magnitude smaller than predicted [&8]. This is the p-n puzzle. There have

been many, many theoretical attempts to explain this puzzle: Chen and Braaten [7] review earlier work by Hou
and Soni, Brodsky, Lepage and Tuan, Karl and Roberts, Chaichian and Torngvist, Pinsky, Brodsky and Karliner,
and Li, Bugg and Zou. &ll seerm to agree that this is an unsolved puzzle, More recently, there has been an
attempt to locate the source of the problem [2], with the suggestion that there is a cancellation of two processes
in the ¥1(25) decay. Our present waork suggests that one can obtain such a cancellation by including valence

gluonic structure,

In Section 2, we show that the energy of the lowest hybrid charmonium state with the guantumn humbers
7702 17 is that of the ¥(25), but our solution is not consistent with a pure hybrid. Since the % 25) state is also
expected to have that energy (about 600 MeV above that of the 7/9(15) state), we predict that the F(25)



state is an admixture of ¢£(25) and hybrid components, In Section 3, we show that this can provide a solution to
the p-npuzzle. In Section 4, we give our conclusions and compare our results to lattice gauge calculations.

-

We now will use the method of QCD sum rules to attempt to find the lowest hybrid charmonium state, assuming

that such a3 pure hybrid charmonium meson with quantum numbers I8 217" auists, First, let us review the
method and the criteria for determining if one has obtained a satisfactory and accurate solution.

The starting point of the method of QCD sum rules is the correlator, which for a hybrid meson is

Y () = (TIIH OB (D), (2.1)

with the current _J‘;_‘;(x) creating the hybrid state being studied. The QCD sum rule is obtained by evaluating %Y in

two ways. First, after a Fourier transform to momentum space, a dispersion relation gives the left-hand side
(LHS) of the sum rule:

ImIT~Yisq) 1@ | ImIIHY(s)
M 20RY VAL Ry =S 2.2
8{e) i n7- %) +)5, 05 a0 (2.2)

where Mg is the mass of the state A (assuming zero width) and s, is the start of the continuum—a parameter to
be determined. The imaginary part of II(s), with the term for the state we are seeking shown as a pole
(corresponding to a &(s - ME) term in ImII) and the higher-lyving states produced by J‘l;'_‘lj shiown as the continuum, is

illustrated in Figure 1.

Figure 1: QCD sum rule study of a state A with mass Mg (no width).

Mext, [I¥Y(g) is evaluated by an operator product expansion (OPE), giving the right-hand side (RHS) of the sum
rule:

Q) = 2 ek | 01 0 (2.3)

with increasing & corresponding to increasing dimension of &,

After a Borel transform, B, defined in Appendix B, in which the g variable is replaced by the Borel mass, Mg, the
final QCD sum rule has the form

Im[II(s)]

(v}
lra-‘""""HzHfﬂ""ﬂ“j'-ﬂz+B_[ ds
n fo7" nls - g%

= 8T culannl o o, (2.4)
as we will show in what follows, Mote that the Borel transform produces an exponential decrease with increasing
values of 5, as shown by the pole term in (2.4), This reduces the contribution of the continuum, where 5 = Mg.

This sum rule is used to estimate the heavy-hybrid mass, Mypm. One of the main sources of error is the treatment
of the continuum. In addition to the parameter s, one must parameterize the effective shape of the continuum.

The criteria for a satisfactory solution are: (1) the contribution of the continuum should not be as large as the
pole term in the LHS; (2} with an exact sum rule, the value of Mppm is independent of the value of Mg (with the

approximation of a fit to the continuurm, there should be a minimum ar maxzimum in the value of Mgy versus Mg,
and the value of Mpypm at this extremum should be approzimately the value of Mg); (3] there should be a gap

hetween the solution for MHZHM and s, which reduces the contribution of the continuum to be smaller than the

2 . o
pole term due to the factor of e=/ME afrer the Borel transform, as we will explain in what follows, If the value of
g5 is much larger than the expected excited hybrid states, however, the solution is not physical.

Since mesons with certain guantum numbers, such as 177, cannot have a standard g3 meson compaosition, there is

a strong maotivation for both experimental and theoretical searches for hybrid mesons, which can have such
states, These states are called exotic or hermaphrodite mesons, Shortly after the introduction of QCD sum rules,
they were used to attempt to find the masses and widths of exotics, The most acourate calculations [3, 4]
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predicted 1 - nyorid Ignt-guark mesans inthe 1L.o07 L5 LbeEV Freglan, wnere sUch 4 state nas oeen round [ 5], 1ne

solutions satisfy the criteria for a good solution, as explained above. For example, for a solution that has a hybrid
mass of 1.3 GeV, the value of 5, was 1.7 GeV, which is a reasonable separation of the lowest from the higher

hybrid states. On the other hand, for these light meson hybrids, many terms in the OPE are needed, which
significantly increases the uncertainty. This explains why previous calculations [2, 4] have found a rather wide
range of values for the light-quark exotic hybrid.

For heavy-guark hivbrids, the higher-order terms in the OPE are quite small, so the QCD sum rule method is more
accurate, Since we are not trying to predict exobic hybrids, however, there is the serious complication of
nonhybrid meson-hybrid meson miking, which will be discussed in detail in what follows. This is an important
aspect of our present work,

There have been many lattice QCD calculations of glueballs and light-guark hybrids [10], The most recent
caleulations of light-quark hiybrids find the lightest exotics to be about 2 GeW [11], guite a kit higher in energy
than the QCD sum rule calculations, This probably is due to the fact that lattice QCD calculations for light quarks
hawve some inconsistencies at the present time, while they are much more accurate for heavy-quark systems [12],
as are QCD sum rules. Exotic charmonium states have been calculated using lattice QCD, and the 171 was found
to be about 4.4 Gew [12], with the expectation that the 17 hybrid charmonium state is at a similar energy. For
the calculation of nonesotic hybrid mesons, such as 17~ hybrids, there are other difficulties for both methods, as
we will discuss in what follows,

For a hybrid meson with quantum numbers 17~ we use the standard current [3, 4]

I =G, (2.5)

with I, = Cy,,, where C is the charge conjugation operator, v, is the usual Dirac matriz, and ¥ is the heavy-quark
field. Carrying out a four-dimensional Fourier transform, the correlator in rmomentum space is

4
m#v(p) = | f—p)}LTr[sabrasbarf_;]w - PITHGHIGE)(py), (2.6)
2n

where 5% is the quark prapagatar, with colors 3 and &, The colar properties of 9, the aluon colar field, with 4, a
Dirac indices, are given in Appendiz A, Mote that the traces are both fermion and color traces. Details of
Tr[Sabl'GS‘bal"B](p) and TF[G""‘IGGV-B]ILD]_:I are given in Appendix &,

It is important to recognize that the correlator used in the QCO sum rule method is similar to the correlator used
in the lattice gauge approach, with the same objective of finding the mass of a heavy-hybrid meson.

&3 described in the preceding subsection, the correlator is evaluated in the method of QCD sum rules via an OPE
and a dispersion relation,

The QCO sum rule method uses an OPE in dimension (or inverse momentumn) (2.3). For the hybrd meson, the
lowest-order diagram [14] is shown in Figure 2.,

Figure 2: Lowest-order term in sum rule.

Using the standard guark and gluon propagators (see Appendix & for some details), we find the following formula
for this lowest-dimensional process:

4 2
Hi""’(ﬂ) =_6I:'.2np14_ {g,-'.a'l,-' [.Dl - (.D_.Dl:'] Y wz_pl)[pﬁpf+pvw_p1).ﬂ~'_ E'Diulfp_pljb"]}

: 2 Z of (2.7)
{g(p—.f)z [%m_pl)z_%Mé_%Métp-Dﬂz U(D—Dﬂ]n
with
fu(p)=J'lL @

u G(l—a)pz—Mél



Extracting the scalar correlator I%, defined by II¥¥(p) = (.DMDV,"DZ—Q“”)HV{D)+(,DMDV F08I%ip), and carrying out

the pq integrals, one finds for Hf{p), the scalar term of Hf”(p),

dar

3 1
nie) -z lozioa

g af %8
Yof1-B)-MZ [ a-a?)

o] 4] 4
i lie 18 MG 19, Mo 440 30040
Fu-0? 12 _2f 120 g-af 3¢ 3 @ (2.9)
-1

-5'4_[1@'5
T g My - e?)

55 M5 > 8% 8 , g
{5 ME[0% - —L)-36+8° - ) - gmglas- 387+ ST}
+terms with three and four integrals.

We find that the terms with three and four integrals are very small, and we do not include them in our calculation.

The second term in the OPE for the heavy-guark hybrid correlator includes the gluon condensate, illustrated in
Figure 3.

Figure 3: Gluon condensate term in sum rule.

For this process, the correlataor Hg"’(p) has the same form as (2.3), except that the gluon trace used to obtain

Hi"”(p]l is replaced with the trace over the gluon condensate [1 - 4], which gives
TrGHAG AYpy) - (2m)*5% (1) 2o G2 gH Vg - gHEg¥). (2.10)

The fermionic factor is the same as for Figure 2. From this, one finds

&Y(p)
=-%%{g“”twé—%w2-waﬂwﬁp“t%f-%M&%%?Fw%?% o
giving for the scalar part of Figure 2
O e T s @12

To ensure convergence of the OPE of the correlator, one performs a Borel transform g [1, 2], defined in Appendix
B. This is discussed in detail in the early papers on QCD sum rules [1- 4], For our problem, we have assumed that

nép) = Hf(p) +H§(,D)J with higher-order terms being very small, We shall see that even I1; is essentially negligible

within the accuracy of the method, and the convergence after the Borel transform is established.

Using the equations in Appendix B, from (B.1), (B.2), and (B.3), where the quantities 81 through £g are given, with

B11§(p) = iy (Mg), we find

al
113 (Mg}
1
“wa? [- 164881 - 155MEB; + 31985 - 16MZB4 ~ 16485 - 110(8g - MF87) - 168 385]
-1 Zwéjsdge—zcmémé)(m)
2047)

5 M3
x{[-310 5 + 6388 - 656(1 + &) K[ Fétua))
(2.13)

5 52 53 M3
H-1g02 2 L E065- 196871 +8) - 32(48 3=+ % Ve fz—=i1 48




= iTo N LiTro (1+5)4u o Mé

5 5°
4{-4??8“5+94425-4920(1+5)-128(45-3m 3(“5 )]«1(2 (1+5))
H-1356 s +E|284~5—3280(1+5)—96(45—35—2+L)]K (EE(1+5))}

1+& 1+ 3(1+5)2 u M§

+multiple integral terms.

The multiple integral terms in (2.11) are small and are dropped, and & is a variable of integration.

- . . ~ .
In a similar way, taking the Borel transform of Hgtpj, wiith Bl'lg(p) =IlziMg], we find

Z i 2 i 2
= _ 3 —2(ME/ME Mg, 14 Q 9] ,
fioiMg) = =i %)ZMSE e 8)[11K2[2M+§]+?K1[2M+§]+ 18KU[2M+§]:|. (2.14)

The method of QCD sum rules uses a dispersion relation for the correlator, which it eguates to the correlator's
operator product, Following the usual convention, we call the dispersion relation the LHS and the OPE the RHS:
M = dispersion relation, Oy, = OPE. Meglecting the width of the hybrid meson, the dispersion relation has the

oo
form of a pole and a continuum: _[D ds(lml'[(s)f(s—pz)). The dispersion relation is evaluated in Euclidean space,
p2 —>—Q2J and the continuum is assumed to start at 5 =5, After the Borel transform, the farm we use for the LHS
is

~ 2 2 2

fins(M3) = Fe MARME 4 (1 M7 + Lopigle™5oME, (2.15)
with & the numerator of the pole, and &4 and Lz constants used to fit the form of the continuum, We should use a

standard method to eliminate £, and fit the sum rule requirement that the =salution should not be sensitive to Mg,

In theory, the exact solution should be independent of Mg,

For convenience in carrying out the sum rule, we have fit the RHS of the correlator to a polynomial in the Borel
mass, [T (Mg] = a1M3 +a2M3 +a3M8 +34M5 and Ta(Mp) = biME +baMg +baMB +byME with 31 = 122.29,5; = -143.88,

F5=45.79,34=-0.346,b1 = 616.0,b2=-279.1p3=-226.56, and b4 = 144.515, with units Gev®,

We find that for all values of Mg relevant to the sum rule, ﬁg is just about 1% of ﬁl, and drop it, as the method is

anly valid to a few percent. The sum rule is obtained by taking the ratio of I to a Mgﬁ. To do this, we use the

1/ =]
relations
o MR e R
g va0 =]
A-ArmE A A (2.16)
+—g LT o |
2 [ v 1( MBJ V+1[ ngl]
—AiMEy i A A iME A A
oo g M) - Bkl )4

Taking the ratio of 8 M2ﬁ|hs(M5)=auM2ﬁrhs(M5) to the equation [Mps(Ms) = Ths(Ms), one obtains the sum rule
& &

1/
for the mass of the heavy charmonium hybrid mesan:

2 raSoiME 2 4 4 3 i’
MEy =1e7e B[SO(L1M5+L2MB)+L1MB+2"I'2MB]+81,J’M§H1} 2.17)
-1
2 o5
x{e 5o MB[ (L MZ +Lomd) - Ty }

The result of the QCD sum rule fit is shown in Figure 4, with 5, =60.0 Gevz,f_l =-99.0 GEV4J and Lz=06.06 Gewe,

Figure 4: QCD sum rule for heavy-hybrid charm meson.



The parameters & and Ls have magnitudes expected for the fit to the continunmm. Except for the large value of
&q, the solution satisfies the criteria for a successful QCD sum rule, as Figure 4 shows, The solution for the mass

is a few percent of the value of Mg in the region of stability. The mass predicted for the hyvbrid is
MpHM = 3.66 Gav, {2.18]
within a 10% accuracy of the sum rule method, while the experirmental mass of the ¥1(25) state [15] s

MP(25)) = 3.68 Gev, (2.19)

The large value of 5., however, predicts that the excited hybrids are at a very high energy, as found in lattice

gauge calculations, and that the ¥1(25) cannot be a pure hybrid, Therefore, we expect that the physical (25 s

an admixzture with a charm meson and a hybrid charm component. A second, arthogonal miked state will be in the
continuum. As we now show, this can provide a solution to the p -1 puzzle.

o-n

In our treatment of hadronic decays of the ¥1(25) state, we use the Sigma/Glueball model, which was motivated

by the BES analysis of glueball decay [16] and the study of scalar mesons and scalar glueballs using QCD sum
rules [17, 12]. We briefly review this model in what follows.

In energy regions where there are both scalar mesons and scalar glueballs, it is expected that 07 states will be
an admixture of mesons and glueballs, For this reason, when using QCD sum rules to find such states, one must
use currents that are a linear combination of glueball and meson currents, & scalar glueball current can have the
farm

=068, (3.1}
while a scalar meson current has the form
I) = %(G(xw(}d - dixdix). (3.2)
we use for our 07 current [17] (with M, needed for correct dimensions)

Fgar=BModm +(1- 181 Vg. (3.3)

The QCD sum rule calculation makes use of the correlatar TI(x) = {?’[_J‘D++_J‘D++]}.The cross term between 37 and 7%

is evaluated by using the scalar glueball-rmeson coupling theorem [19, 207:
Gy 32 - (3.4)
Jaxrroomon -, :

with {39y = the quark condensate, which 1= illustrated in Figure 5,

e % Figure 5: Scalar glueball-meson coupling thearem.

The results of the QCD sum rule calculations [17, 18] are that there are three solutions:

80% scalar glueball at 1300 Me\ — the £ (1500);

B80% scalar meson at 1350 MeV — the fp (1370);
Light Scalar Glueball 400- 600 Mew — the Sigma/Glueball,

The Sigma/Glueball model follows from the existence of the o, a scalar 7 - n resonance with a broad width and the

same mass as the scalar glueball found in the sum rule calculations, and makes use of the glueball-meson
coupling shown in Figure 5. It has been used for the study of the Roper resonance decay into a nucleon and a o
[S, 21], and the prediction of ¢ production in proton-proton high-energy collisions [22], and other applications.
The relevance for our present work is that just as it is possible to determine the mixking parameter for a state
consisting of a scalar meson and a scalar glueball, it should be possible to determine the % and hybrid £%g

admixzture for charmonium systems.

a-n



The solution to the o -7 puzzle by the mizing of hybrid and normal meson components of the ¥(225) state can be
understood from Figures 6 and 7, which illustrate the decay of a ¢¢ and a ¢8g state into two hadrons, The ot
decay invalves the matriz element (no |0 ¥ (e, 2573

Figure 6: Lowest-order PQCD diagram for a o decay into two hadrons.

u . Figure 7: Decay of a ocfg state into two hadrons.

The corresponding hybrid decay involves the matrix element ¢no |07 ¥ {cTg, 2503, with the diagram shown in
Figure 7.

Assuming that the 2 s state is a ¢ «%g admixture,

(2252 b | T(cE, 2505+ 41— b2 | ¥rlcag, 250, (3.5)

and recognhizing that the © and @F matrix elements are approgimately equal, we see that the solution to the p-n
puzzle requires

Baadl-b® =01, (3.6)

The solution of the g - 7 puzzle would be given if
be-7, (3.7)

In other words, if b=-.7, we have found a solution of the p -1 puzzle. The evaluation of & is rather complicated,
and the testing of this conjecture will be carried out in future wark,

Using the method of QCD sum rules, we have shown that the ¥(25) state cannot be a pure charmonium hybrid,
We have found that the energy of the lowest FLa hvbrid charmonium state is approkimately the same as
the ¥1(25) state, about 600 Mevw above the 7/ ¥(15) state, buk that the QCD sum rule solution is not consistent
with a pure hybrid, The standard model prediction for c8(25) 15 at approzimately the same energy. Therefore, we

expect that the physical ¥(25) state is an admixture of a ¢c&(25) and a cB(8)g(31(25). Using this picture, we find a
possible solution to the famous o - 7 puzzle.

There have been many lattice calculations of exotic hybrid mesons, There is experimental evidence for an exotic
light-quark 1™+ meson (see [9] for a discussion) at 1.4 to 1.6 Gew, which is consistent with QCD sum rule

calculations [3, 4], while lattice calculations find the lowest 17F hvbrid at 1.9 to 2.1 GeW. The lowest energy 17+
charmonium hybrid found in lattice calculations is at 4.4 Gew [13], about 200 MeV above our 17 hybrid
charmoniurmn solution. This is consistent with our large value of 55, For the 177 state, we have shown that one

must use a miked ot and &g current, which we shall use in future work, This use of a mired current to define the

correlator has not been done in lathice QCOD caludations, but with the QCD sum rule method, it can be done in a
rather straight-forward calculation.

It is interesting that the energy difference between the 25 and the T(15) is also approximately 600 Mev, If
this is the energy of a (rs) hybrid, this could provide a solution to the puzzling o decays of T(rS) states that
have recently been observed [22], Investigation of this system is a topic of future research.

The current to create a heavy-quark hybrid meson with 75 = 17" is
I =TLGHVY, (A1)

where ¥ is the heavy-guark field, I, = Cy, ¥, is the usual Dirac matrix, © is the charge conjugation aperator, and
the gluon colar field is



GHY = fj EG;WJ (A.2)

with Az the SUL3) generator (TrlhzAsl= 2854). From this, one finds for the correlator of & heavy-guark hybrid

meson

() = [a*xet XTUEGWE0N)

. (5.3)

[ 9P qysabr sbary )i p T GHAGYE D),
r:2”)4 £

where 53 is the quark propagator, a standard Dirac propagator for a fermion with mass #q, with colors 2 and &,

Using € = iv2y? Trlyayg] = 40ga, and Trivavavsysl = 40055 - Oralas + 0a5054) |

Tr[sabrasbﬂ“rﬁ](o)

) (.4)

(- Mlip - )% - M3]

24”.[ ) ~ME0ap+(Daks — kaks)@ra05a - Qaagaﬁwwgéa:'

To use dimensional regularization, we define the quantity &= 4- ¢, and let £ = 0 to complete the integrals. One
can then show

IG" .f(' 1 _ I , (8.5
(2m)” (k% - M- k)7 - M1 (B
with
1 da
_ . (8.6
o=l (2-a%)p? - M2

The first term in the OFE, shown in Figure 2, has a standard gluon propagator, For the gluon trace [3, 4] one
finds

. pfpk papf pfpY pinF
TG GYE) (py) = - an?i{gge—tsl + gy 25t - g, 025t - g L), (&.7)
i i P{ i

The correlator for the process shown in Figure 2 is found to be

2
H-E""'(p]l _ SIG" .Dl{g,uu[.al (o -p1d] B (.D—.Dl)[pypf+puw_p1)a!~'_ZDiu(p_pl)u]}

2 2
(2 32 'Dl 'Dl (.‘3\.8)
2 Mg 41 2
Gor [G-p0"- g4 —— S oo}

The next term in the OPE for this heavy-guark system, where quark condensates are negligible, is the gluon
condensate term, shown in Figure 2, The trace over the quark propagators is the same as in (A.4), The gluon field
trace for this term is

(TG4 6VYE(py )y = (2m) 5 tol) <Gz>(gw aff _ quBguety, (£.9)

From this, one finds 1'[5“’, given in (2,11},

& key method that enables one to use the operator expansion to get accurate sum rules is the use of the Borel
transform [1, 2], 8, defined by

B= _lim
qun—w(”‘ 131

(szn(—i ¥ . (B.1)

Twao key equations which we need are (with &, the modified Beszel functions)



ke e—mzf‘Mgz

N T (8.2)

_[;jx""leafx‘bx = 2(%)“2%(2&)-

Transfarms used in the body of the paper are

1

1 ado Mz - _ 2 = EMZ
: =ID (G_szﬁ(ﬂz— (a—(jzjj -2 EMQMBKD( M‘éz:h
1 1
8y =8 da 2_[ dff 3

Vet -BT-ME (@-a)T-B)]

i 2
-2(M5fM§)(1+5)[2K2(2_§(1 +8))+ 81 (2231 +8)
B =]

MZ
+6K.3|: (1+5))]
1 da df g
Bz =8
2 IU(G azfpj (1-Bip? - Mg f{a—a?)(1-F)]
o 5 _ e 2 M
= 2M5ID R 2MGIMENIHEN o ATE(“‘S”Jr 12K2(2—§(1+5))
Mz Mz
+30Ky (2 —§(1+5)]+20KD( F‘g(l +8)]].
B B
1 da 4 af B
Bz =8
’ IU(G o I”(l BIo% - 43/ a- )1 B)]
oo M ME
=2Mé‘_[u 05 5a~2 B /MEN LB o F§(1+5))+12K2(2F§(1+5))
MEZ M2
+30K [ 2—F(1+8)) + 20Kg{2—2(1+8)]],
MB MB
- R ag g
Ba = I”ca—a) I”(l Bio?-MZ J (o -a?)1-5)]
= 2w [ a5 SeHMEMENLHY oy F§U+5)H,
ot oda gt aB g
s =l; @-a?) I”cl—ﬁimz—wgma—azm—m]
o _ z 2 M(% Mé
= zmgfn g5 5(1+8)e 2(MQfMg)(1+5)[2K3(2F§(1 +81)+ 12K2(2F§(1 +8))
Mg M8
+30Ky Fg(l+5))+zuxu( —5(1 +8)]],
1 do g d5(-36+8° - 5° 1 3)
Bg =8
° I”(a—o@)p ID(1—5)[p2—M5f(a—02)(1—ﬁ)]
© 5° 5° —2(MEMENLHS
=2M5fgd5( R v 3(1+5)2)e (Mg MEINLHE)
M& M&
x[2K3(2m(1 +))+ 12K2(2E(1 +8)
=] =]
M Mg
+3E|Kﬂ2m(1+5))+20KD(2W(1+5)HJ
& 25 , (B.3)
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